mix的中文是什么_mix是最小的意思吗

mix的中文是什么_mix是最小的意思吗《mixup:BEYONDEMPIRICALRISKMINIMIZATION》2017(ICLR2018),HongyiZhangetal.Mixup,MIT和FAIRQ:为什么dataaugmentation是理解为控制模型复杂度?A:准确地说,我觉得dataaugmentation既不能简单地理解为增加trainingdata,也不能简单地理解为控制模型复杂度,而是两种效果兼而有之。考虑图像识别里常用的改变aspectratio做dataaugmentation的

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE稳定放心使用

《mixup:BEYOND EMPIRICAL RISK MINIMIZATION》

  • 2017(ICLR2018),Hongyi Zhang et al. Mixup ,MIT和FAIR

Q: 为什么data augmentation是理解为控制模型复杂度?

A: 准确地说,我觉得data augmentation既不能简单地理解为增加training data,也不能简单地理解为控制模型复杂度,而是两种效果兼而有之。考虑图像识别里常用的改变aspect ratio做data augmentation的方法,生成的图像虽然和真实图像相似,但是并不是来自于data distribution,更不是它的i.i.d.抽样。而经典的supervised learning以及统计学习理论的基本假设就是训练集和测试集都是data distribution的i.i.d.抽样,所以这并不是经典意义上的增加training data。这些合成的training data的作用,流行的解释是“增强模型对某种变换的invariance”。这句话反过来说,就是机器学习里经常提到的“减少模型估计的variance”,也就是控制了模型的复杂度。需要注意的是,L2正则化、dropout等等也都是在控制模型复杂度,只不过它们没有考虑数据本身的分布,而data augmentation属于更加机智的控制模型复杂度的方法。

其实反过来看,L2正则化和dropout也各自等价于某种data augmentation。参考Vicinal Risk Minimization 和 [1506.08700] Dropout as data augmentation

Q: label线性加权后,不是得到了这两个样本中间的类别了吗?

A: label用的是one-hot vector编码,可以理解为对k个类别的每个类给出样本属于该类的概率。加权以后就变成了”two-hot”,也就是认为样本同时属于混合前的两个类别。

另一种视角是不混合label,而是用加权的输入在两个label上分别计算cross-entropy loss,最后把两个loss加权作为最终的loss。由于cross-entropy loss的性质,这种做法和把label线性加权是等价的,大家可以自行思考一下。

 

mix的中文是什么_mix是最小的意思吗

import numpy as np
import torch

def mixup_data(x, y, alpha=1.0, use_cuda=True):
 
    '''Compute the mixup data. Return mixed inputs, pairs of targets, and lambda'''
    if alpha > 0.:
        lam = np.random.beta(alpha, alpha)
    else:
        lam = 1.
    batch_size = x.size()[0]
    if use_cuda:
        index = torch.randperm(batch_size).cuda()
    else:
        index = torch.randperm(batch_size)
 
    mixed_x = lam * x + (1 - lam) * x[index,:] # 自己和打乱的自己进行叠加
    y_a, y_b = y, y[index]
    return mixed_x, y_a, y_b, lam
 
def mixup_criterion(y_a, y_b, lam):
    return lambda criterion, pred: lam * criterion(pred, y_a) + (1 - lam) * criterion(pred, y_b)
 

cutout:随机裁剪区域,填充0像素

cutmix:随机裁剪区域,填充其他图像到相应区域,代码可根据mixup来改写

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/190027.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • nrm使用报错_重大错报

    nrm使用报错_重大错报nrm使用错误:ERR_INVALID_ARG_TYPE

    2025年7月7日
    2
  • visio 2010 密钥

    visio 2010 密钥GR24B-GC2XY-KRXRG-2TRJJ-4X7DCVWQ6G-37WBG-J7DJP-CY66Y-V278X2T8H8-JPW3D-CJGRK-3HTVF-VWD83HMCVF-BX8YB-JK46P-DP3KJ-9DRB222WT8-GGT7M-7MVKR-HF7Y4-MCWWDVX6BF-BHVDV-MHQ4R-KH9QD-6TQKVJ4MVP-7F4X4-V8

    2022年5月6日
    33
  • canopen协议的介绍之NMT节点管理;

    canopen协议的介绍之NMT节点管理;耐心查看 必有所获 尽量别跳过 否则有些前面写了的 后面可不一定解释了 一个系列的首页 https blog csdn net kissgoodbye2 article details canopen 需要掌握的知识 1 对象字典 OD 最重要 需要了解 2 NMT 节点管理 主节点来操作 3 PDO 过程数据传输 4 SDO 对象字典配置

    2025年6月2日
    3
  • 长轮询的使用实现_python 轮询

    长轮询的使用实现_python 轮询轮询(Polling):是指不管服务器端有没有更新,客户端(通常是指浏览器)都定时的发送请求进行查询,轮询的结果可能是服务器端有新的更新过来,也可能什么也没有,只是返回个空的信息。不管结果如何,客户端处理完后到下一个定时时间点将继续下一轮的轮询。长轮询(LongPolling):长轮询的服务其客户端是不做轮询的,客户端在发起一次请求后立即挂起,一直到服务器端有更新的时候,服务器才会主动推送信息到…

    2022年10月14日
    2
  • IDEA自动导包配置总结

    IDEA自动导包配置总结IDEA 实用功能之自动导包设置自动导包是什么意思 原本我们在 eclipse 中 如果要引用一个方法 发现缺少这个方法所需要的包 需要手工去输入 比如我们要用到 FileInputStr 流 需要在前面输入 importjava io 而在 IDEA 中 通过简单的设置不但会帮你解决自动导入你想要的包 即你只要自己用方法就行 所依赖的包 IDEA 会帮你搞定 除此之外 IDEA 还会帮你优化引入包的结构 即删除一些没有的 import 的语句 下面是 AutoImport 设置步骤详解 Setting

    2025年7月17日
    4
  • gamma correction什么意思_伽马校正计算方法

    gamma correction什么意思_伽马校正计算方法伽马是数字成像系统的一个重要特征,它定义了像素值与其实际亮度之间的关系。在标准显示器上面,如果没有伽马,数码相机拍摄到的阴影内容便会跟我们实际看到的有所差异。平时我们所说的伽马校正、伽马编码、伽马压缩,都是伽马曲线的各种应用场景,属于相似的概念。对于伽马工作原理的理解,一方面可以提高摄影者的曝光技术,另一方面可以帮助人们更好地利用后期的图像编辑功能。

    2022年9月24日
    2

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号