Sklearn中的CV与KFold详解

Sklearn中的CV与KFold详解关于交叉验证,我在之前的文章中已经进行了简单的介绍,而现在我们则通过几个更加详尽的例子.详细的介绍CV%matplotlibinlineimportnumpyasnpfromsklearn.model_selectionimporttrain_test_splitfromsklearnimportdatasetsfromsklearnimports…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

关于交叉验证,我在之前的文章中已经进行了简单的介绍,而现在我们则通过几个更加详尽的例子.详细的介绍

CV

%matplotlib inline
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn import datasets
from sklearn import svm

iris = datasets.load_iris()
iris.data.shape,iris.target.shape
((150, 4), (150,))

一般的分割方式,训练集-测试集.然而这种方式并不是很好

X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.4, random_state=0) 

clf_svc = svm.SVC(kernel='linear').fit(X_train,y_train)
clf_svc.score(X_test,y_test)
0.9666666666666667
  • 缺点一:浪费数据
  • 缺点二:容易过拟合,且矫正方式不方便

这时,我们需要使用另外一种分割方式-交叉验证

from sklearn.model_selection import cross_val_score
clf_svc_cv = svm.SVC(kernel='linear',C=1)
scores_clf_svc_cv = cross_val_score(clf_svc_cv,iris.data,iris.target,cv=5)
print(scores_clf_svc_cv)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores_clf_svc_cv.mean(), scores_clf_svc_cv.std() * 2))
[ 0.96666667  1.          0.96666667  0.96666667  1.        ]
Accuracy: 0.98 (+/- 0.03)

同时我们也可以为cross_val_score选择不同的性能度量函数

from sklearn import metrics
scores_clf_svc_cv_f1 = cross_val_score(clf_svc_cv,iris.data,iris.target,cv=5,scoring='f1_macro')
print("F1: %0.2f (+/- %0.2f)" % (scores_clf_svc_cv_f1.mean(), scores_clf_svc_cv_f1.std() * 2))
F1: 0.98 (+/- 0.03)

同时也正是这些特性使得,cv与数据转化以及pipline(sklearn中的管道机制)变得更加契合

from sklearn import preprocessing
from sklearn.pipeline import make_pipeline
clf_pipline = make_pipeline(preprocessing.StandardScaler(),svm.SVC(C=1))
scores_pipline_cv = cross_val_score(clf_pipline,iris.data,iris.target,cv=5)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores_clf_svc_cv_f1.mean(), scores_clf_svc_cv_f1.std() * 2))
Accuracy: 0.98 (+/- 0.03)

同时我们还可以在交叉验证使用多个度量函数

from sklearn.model_selection import cross_validate
from sklearn import metrics

scoring = ['precision_macro', 'recall_macro']
clf_cvs = svm.SVC(kernel='linear', C=1, random_state=0)
scores_cvs = cross_validate(clf_cvs,iris.data,iris.target,cv=5,scoring=scoring,return_train_score = False)
sorted(scores_cvs.keys())
['fit_time', 'score_time', 'test_precision_macro', 'test_recall_macro']
print(scores_cvs['test_recall_macro'])
print("test_recall_macro: %0.2f (+/- %0.2f)" % (scores_cvs['test_recall_macro'].mean(), scores_cvs['test_recall_macro'].std() * 2))
[ 0.96666667  1.          0.96666667  0.96666667  1.        ]
test_recall_macro: 0.98 (+/- 0.03)

同时cross_validate也可以使用make_scorer自定义度量功能
或者使用单一独量

from sklearn.metrics.scorer import make_scorer
scoring_new = { 
   'prec_macro': 'precision_macro','recall_micro': make_scorer(metrics.recall_score, average='macro')}
# 注意此处的make_scorer
scores_cvs_new = cross_validate(clf_cvs,iris.data,iris.target,cv=5,scoring=scoring_new,return_train_score = False)
sorted(scores_cvs_new.keys())
['fit_time', 'score_time', 'test_prec_macro', 'test_recall_micro']
print(scores_cvs_new['test_recall_micro'])
print("test_recall_micro: %0.2f (+/- %0.2f)" % (scores_cvs_new['test_recall_micro'].mean(), scores_cvs_new['test_recall_micro'].std() * 2))
[ 0.96666667  1.          0.96666667  0.96666667  1.        ]
test_recall_micro: 0.98 (+/- 0.03)

关于Sklearn中的CV还有cross_val_predict可用于预测,下面则是Sklearn中一个关于使用该方法进行可视化预测错误的案例

from sklearn import datasets
from sklearn.model_selection import cross_val_predict
from sklearn import linear_model
import matplotlib.pyplot as plt

lr = linear_model.LinearRegression()
boston = datasets.load_boston()
y = boston.target

# cross_val_predict returns an array of the same size as `y` where each entry
# is a prediction obtained by cross validation:
predicted = cross_val_predict(lr, boston.data, y, cv=10)

fig, ax = plt.subplots()
fig.set_size_inches(18.5,10.5)
ax.scatter(y, predicted, edgecolors=(0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.show()

通过交叉验证进行数据错误的可视化

KFlod的例子

Stratified k-fold:实现了分层交叉切分

from sklearn.model_selection import StratifiedKFold
X = np.array([[1, 2, 3, 4],
              [11, 12, 13, 14],
              [21, 22, 23, 24],
              [31, 32, 33, 34],
              [41, 42, 43, 44],
              [51, 52, 53, 54],
              [61, 62, 63, 64],
              [71, 72, 73, 74]])

y = np.array([1, 1, 0, 0, 1, 1, 0, 0])

stratified_folder = StratifiedKFold(n_splits=4, random_state=0, shuffle=False)
for train_index, test_index in stratified_folder.split(X, y):
    print("Stratified Train Index:", train_index)
    print("Stratified Test Index:", test_index)
    print("Stratified y_train:", y[train_index])
    print("Stratified y_test:", y[test_index],'\n')
Stratified Train Index: [1 3 4 5 6 7]
Stratified Test Index: [0 2]
Stratified y_train: [1 0 1 1 0 0]
Stratified y_test: [1 0] 

Stratified Train Index: [0 2 4 5 6 7]
Stratified Test Index: [1 3]
Stratified y_train: [1 0 1 1 0 0]
Stratified y_test: [1 0] 

Stratified Train Index: [0 1 2 3 5 7]
Stratified Test Index: [4 6]
Stratified y_train: [1 1 0 0 1 0]
Stratified y_test: [1 0] 

Stratified Train Index: [0 1 2 3 4 6]
Stratified Test Index: [5 7]
Stratified y_train: [1 1 0 0 1 0]
Stratified y_test: [1 0] 
from sklearn.model_selection import StratifiedKFold
X = np.array([[1, 2, 3, 4],
              [11, 12, 13, 14],
              [21, 22, 23, 24],
              [31, 32, 33, 34],
              [41, 42, 43, 44],
              [51, 52, 53, 54],
              [61, 62, 63, 64],
              [71, 72, 73, 74]])

y = np.array([1, 1, 0, 0, 1, 1, 0, 0])

stratified_folder = StratifiedKFold(n_splits=4, random_state=0, shuffle=False)
for train_index, test_index in stratified_folder.split(X, y):
    print("Stratified Train Index:", train_index)
    print("Stratified Test Index:", test_index)
    print("Stratified y_train:", y[train_index])
    print("Stratified y_test:", y[test_index],'\n')
Stratified Train Index: [1 3 4 5 6 7]
Stratified Test Index: [0 2]
Stratified y_train: [1 0 1 1 0 0]
Stratified y_test: [1 0] 

Stratified Train Index: [0 2 4 5 6 7]
Stratified Test Index: [1 3]
Stratified y_train: [1 0 1 1 0 0]
Stratified y_test: [1 0] 

Stratified Train Index: [0 1 2 3 5 7]
Stratified Test Index: [4 6]
Stratified y_train: [1 1 0 0 1 0]
Stratified y_test: [1 0] 

Stratified Train Index: [0 1 2 3 4 6]
Stratified Test Index: [5 7]
Stratified y_train: [1 1 0 0 1 0]
Stratified y_test: [1 0] 

除了这几种交叉切分KFlod外,还有很多其他的分割方式,比如StratifiedShuffleSplit重复分层KFold,实现了每个K中各类别的比例与原数据集大致一致,而RepeatedStratifiedKFold 可用于在每次重复中用不同的随机化重复分层 K-Fold n 次。至此基本的KFlod在Sklearn中都实现了

注意

i.i.d 数据是机器学习理论中的一个常见假设,在实践中很少成立。如果知道样本是使用时间相关的过程生成的,则使用 time-series aware cross-validation scheme 更安全。 同样,如果我们知道生成过程具有 group structure (群体结构)(从不同 subjects(主体) , experiments(实验), measurement devices (测量设备)收集的样本),则使用 group-wise cross-validation 更安全。

下面就是一个分组KFold的例子,

from sklearn.model_selection import GroupKFold

X = [0.1, 0.2, 2.2, 2.4, 2.3, 4.55, 5.8, 8.8, 9, 10]
y = ["a", "b", "b", "b", "c", "c", "c", "d", "d", "d"]
groups = [1, 1, 1, 2, 2, 2, 3, 3, 3, 3]

gkf = GroupKFold(n_splits=3)
for train, test in gkf.split(X, y, groups=groups):
    print("%s %s" % (train, test))
[0 1 2 3 4 5] [6 7 8 9]
[0 1 2 6 7 8 9] [3 4 5]
[3 4 5 6 7 8 9] [0 1 2]

更多内容请参考:sklearn相应手册

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/191284.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Kali WPScan的使用(WordPress扫描工具)

    Kali WPScan的使用(WordPress扫描工具)一 WPScan 简介 WordPress 网站介绍 WordPress 是全球流行的博客网站 全球有上百万人使用它来搭建博客 他使用 PHP 脚本和 Mysql 数据库来搭建网站 Wordpress 作为三大建站模板之一 在全世界范围内有大量的用户 这也导致白帽子都会去跟踪 WordPress 的安全漏洞 Wordpress 自诞生起也出现了很多漏洞 Wordpress 还可以使用插件 主题 于

    2025年9月22日
    3
  • ico图标在谷歌浏览器中如何显示?

    ico图标在谷歌浏览器中如何显示?

    2021年10月9日
    184
  • Kong网关介绍[通俗易懂]

    Kong网关介绍[通俗易懂]传统服务如下左图,通用函数重复使用在多个服务中,系统庞大僵化难以管理,由于会冲击其他服务导致的扩展困难,由于系统限制导致生产率低,如下右图是kong的解决方案kong特点:云原生:平台无关,kong可以在裸机和Kubernetes上运行。动态负载平衡:跨多个上游服务的流量负载均衡。…

    2025年10月24日
    6
  • LoadRunner 详细使用教程

    LoadRunner 详细使用教程打开VirtualUserGenerator(虚拟用户生成器)打开后会有一个小弹窗,点击closeNewScriptandSolution(新建脚本和解决方案)创建脚本选择SingleProtocol下面的Web-HTTP/HTML,在写脚本名称、选择存放位置、解决方案、打钩最后点击Create(创建)就可以了创建成功后点解决方案下Test下面的Action,点击菜单栏的Record里的Record或者点红圈中的红点录制脚本(..

    2022年5月24日
    40
  • RTP协议头详解

    RTP协议头详解1.RTP协议RTP:即可心跑在TCP也可以跑在UDP上,实时流协议,所以通常是跑在UDP上。前12个字节出现在每个RTP包中,仅仅在被混合器插入时,才出现CSRC识别符列表。各个域的含义如下所示:(1)版本(V):2比特,此域定义了RTP的版本。此协议定义的版本是2。(值1被RTP草案版本使用,值0用在最初”vat”语音工具使用的协议中。)(2)填充(P):1比特,若填料比特被设置,则此包包含一到多个附加在末端的填充比特,填充比特不算作负载的一部分。填

    2022年6月28日
    52
  • linux rwx 权限「建议收藏」

    linux rwx 权限「建议收藏」@linuxrwx权限欢迎使用Markdown编辑器你好!这是你第一次使用Markdown编辑器所展示的欢迎页。如果你想学习如何使用Markdown编辑器,可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。新的改变我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:全新的界面设计,将会带来全新的写作体验;在创作中心设置你喜爱的代码高亮样式,Markdown将代码片显示选择的高亮样

    2022年5月2日
    58

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号