大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺
def printing_Kfold_scores(x_train_data,y_train_data):
fold = KFold(5,shuffle=False)
print(fold)
#C——正则化强度
c_param_range = [0.01,0.1,1,10,100]
results_table = pd.DataFrame(index = range(len(c_param_range),2), columns = [‘C_parameter’,’Mean recall score’])
results_table[‘C_parameter’] = c_param_range
j = 0
for c_param in c_param_range:
print(‘———————————–‘)
print(‘C parameter: ‘, c_param)
print(‘———————————–‘)
print(”)
recall_accs = []
for iteration, indices in enumerate(fold,start=1):
提示报错:
in printing_Kfold_scores(x_train_data, y_train_data)
16
17 recall_accs = []
—> 18 for iteration, indices in enumerate(fold,start=1):
19
20 #逻辑回归模型TypeError: ‘KFold’ object is not iterable
发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/191460.html原文链接:https://javaforall.net