向量范数和矩阵范数[通俗易懂]

向量范数和矩阵范数[通俗易懂]本文分别介绍了向量范数和矩阵范数的定义,以及几种常见的向量范数和矩阵范数

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

范数,是具有长度概念的函数。在线性代数、泛函分析及相关的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。

1 向量范数

向量范数概念是三维欧式空间中向量长度概念的推广。

1.1 向量范数的定义

如果向量 x ∈ x\in x R n R^n Rn(或 C n C^n Cn)的某个实值函数 N ( x ) = ∣ ∣ x ∣ ∣ N(x)=||x|| N(x)=x满足以下条件

  1. ∣ ∣ x ∣ ∣ ≥ 0 ||x||≥0 x0(当且仅当 x = 0 x=0 x=0 时, ∣ ∣ x ∣ ∣ = 0 ||x||=0 x=0) (非负性或正定性
  2. ∣ ∣ α x ∣ ∣ = ∣ α ∣ ∣ ∣ x ∣ ∣ ||\alpha x||=|\alpha| ||x|| αx=αx ∀ α ∈ R ( 或 C ) \forall \alpha ∈R(或C) αRC齐次性
  3. ∣ ∣ x + y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ ||x+y||≤||x||+||y|| x+yx+y三角不等式

则称 N ( x ) N(x) N(x) R n R^n Rn(或 C n C^n Cn)上的一个向量范数(或模)。由三角不等式条件,可推得

  1. | ∣ ∣ x ∣ ∣ − ∣ ∣ y ∣ ∣ ||x||-||y|| xy | ≤ ∣ ∣ x − y ∣ ∣ ≤||x-y|| xy

1.2 常用的向量范数

设向量 x = ( x 1 , x 2 , … , x n ) T , y = ( y 1 , y 2 , … , y n ) T ∈ R n ( 或 C n ) x=(x_1,x_2,…,x_n)^T,y=(y_1,y_2,…,y_n)^T∈R^n (或C^n) x=(x1,x2,,xn)Ty=(y1,y2,,yn)TRn(Cn),则

  1. 向量的 ∞ ∞ -范数(最大范数):向量元素绝对值最大的一个,即 ‖ x ‖ ∞ = m a x 1 ≤ i ≤ n ⁡ ∣ x i ∣ ‖x‖_∞=max_{1≤i≤n}⁡|x_i | x=max1inxi
  2. 向量的1-范数:向量元素绝对值的累加和,即 ‖ x ‖ 1 = ∑ i = 1 n ∣ x i ∣ ‖x‖_1=\sum_{i=1}^n{|x_i |} x1=i=1nxi
  3. 向量的2-范数(欧式范数):自身内积的平方根,即 ‖ x ‖ 2 = ( x , x ) 1 / 2 = ( ∑ i = 1 n x i 2 ) 1 / 2 ‖x‖_2=(x,x)^{1/2}=(\sum_{i=1}^n{x_i^2 })^{1/2} x2=(x,x)1/2=(i=1nxi2)1/2
  4. 向量的p-范数: ‖ x ‖ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 / p , p ∈ [ 1 , ∞ ) ‖x‖_p=(\sum_{i=1}^n|x_i |^p )^{1/p},p∈[1,∞) xp=(i=1nxip)1/p,p[1,)

2 矩阵范数

矩阵范数是向量范数的推广。

2.1 矩阵范数的定义

如果矩阵 A ∈ R n × n A∈R^{n×n} ARn×n的某个非负的实值函数 N ( A ) = ‖ A ‖ N(A)=‖A‖ N(A)=A,满足以下条件

  1. ∣ ∣ A ∣ ∣ ≥ 0 ( ∣ ∣ A ∣ ∣ = 0 ⇔ A = 0 ) ||A||≥0(||A||=0\hArr A=0) A0A=0A=0(正定条件)
  2. ∣ ∣ c A ∣ ∣ = ∣ c ∣   ∣ ∣ A ∣ ∣ ||cA||=|c|\ ||A|| cA=c A,c为实数(齐次条件
  3. ∣ ∣ A + B ∣ ∣ ≤ ∣ ∣ A ∣ ∣ + ∣ ∣ B ∣ ∣ ||A+B||≤||A||+||B|| A+BA+B三角不等式
  4. ∣ ∣ A B ∣ ∣ ≤ ∣ ∣ A ∣ ∣   ∣ ∣ B ∣ ∣ ||AB||≤||A||\ ||B|| ABA B

则称 N ( A ) N(A) N(A) R n × n R^{n×n} Rn×n上的一个矩阵范数(或模)。

2.2 常用的矩阵范数

设矩阵 A ∈ R n × n A∈R^{n×n} ARn×n,则

  1. 矩阵A的 ∞ ∞ -范数(行范数):行元素之和的最大值,即 ‖ A ‖ ∞ = m a x 1 ≤ i ≤ n ⁡ ∑ j = 1 n ∣ a i j ∣ ‖A‖_∞=max_{1≤i≤n}⁡\sum_{j=1}^n|a_{ij}| A=max1inj=1naij
  2. 矩阵A的1-范数(列范数):列元素之和的最大值,即 ‖ A ‖ 1 = m a x 1 ≤ j ≤ n ⁡ ∑ i = 1 n ∣ a i j ∣ ‖A‖_1=max_{1≤j≤n}⁡∑_{i=1}^n|a_{ij}| A1=max1jni=1naij
  3. 矩阵A的2-范数 ‖ A ‖ 2 = λ m a x ( A T A ) ‖A‖_2=\sqrt{λ_{max} (A^T A)} A2=λmax(ATA)
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/191925.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • openwrt 通过scp命令传文件到windows

    openwrt 通过scp命令传文件到windows1、在windows上安装winsshd软件,用于打开ssh服务。2、从linux系统复制文件到windows系统:scp-r/home/yu/testyulir@192.168.200.230:/d:/3、在linux环境下,将windows下的文件复制到linux系统中:scp-ryulir@192.168.200.230:/d:/test/home/yu/感觉上述麻烦…

    2022年8月22日
    31
  • JAVA 解析Xml字符串

    JAVA 解析Xml字符串JAVA解析Xml字符串(dom4j)

    2022年5月4日
    54
  • anaconda conda 切换为国内源 、windows 和 Linux配置方法、 添加清华源——【一文读懂】

    anaconda conda 切换为国内源 、windows 和 Linux配置方法、 添加清华源——【一文读懂】请问下载过程非常卡怎么办,特别特别慢;请问为什么我搭建一个深度学习环境半个多小时都没成,而你10分钟就随手搭建一个环境讲道理?这就像搬砖,搬的久了,还不能允许我一天多拉几车吗

    2022年5月24日
    46
  • rst markdown_r语言markdown导出

    rst markdown_r语言markdown导出markdown文件转RST文件时遇到的一些问题最近需要把一些markdown文件转成RST文件,第一次接触RST文件,使用中会有一些语法问题需要注意。在这里做个记录。转化工具我们可以先采用工具对整体做个初步的转换。因为转换工具不能做到完美转换,在初步转换完成后再根据实际的显示情况进行下一步的调整。这里推荐一个网站:MD在线转换成RST如果不注册的话,每天最多可以转化10个文件。后续调整转换后的大体格式是正确的,包括不同级别的标题,一些加粗斜体显示等,但是很多细节还是要自己调整的。1.网页链

    2022年9月30日
    0
  • linux signal 处理

    linux signal 处理

    2021年12月6日
    49
  • redis过期删除机制(redis过期策略和删除策略)

    在Redis中,内存的大小是有限的,所以为了防止内存饱和,需要实现某种键淘汰策略。主要有两种方法,一种是当Redis内存不足时所采用的内存释放策略。另一种是对过期键进行删除的策略,也可以在某种程度上释放内存。1、内存释放的策略Redis中有专门释放内存的函数:freeMmoryIfNeeded。每当执行一个命令的时候,就会调用该函数来检测内存是否够用。如果已用内存大于最大内存限制,它就会进行内存释…

    2022年4月17日
    71

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号