矩阵范数的等价性(原创)[通俗易懂]

矩阵范数的等价性(原创)[通俗易懂]矩阵范数的等价设F=R”role=”presentation”>F=RF=R\mathbbF=\mathbbR或C,”role=”presentation”>C,C,\mathbbC,对于任意两个Fn×n”role=”presentation”>Fn×nFn×n\mathbbF^{n\timesn}上的范数‖⋅&#x

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

矩阵范数的等价

F=R F = R C, C , 对于任意两个 Fn×n F n × n 上的范数 α ‖ ⋅ ‖ α β, ‖ ⋅ ‖ β , 若存在常数 C1>0,C2>0, C 1 > 0 , C 2 > 0 , 使得 XFn×n, ∀ X ∈ F n × n ,

XαC1Xβ,XβC2Xα ‖ X ‖ α ≤ C 1 ‖ X ‖ β , ‖ X ‖ β ≤ C 2 ‖ X ‖ α



则称

α ‖ ⋅ ‖ α


β ‖ ⋅ ‖ β
是等价的。

性质

Fn×n F n × n 上的任意两种矩阵范数都是等价的。

证明

EijFn×n E i j ∈ F n × n 表示只有在第 i i 行第
j

j
列的元素为 1, 1 , 其他元素都为 0 0 的矩阵。

XFn×n,X=(xij)n×n=i=1nj=1nxijEij

X F n × n , X = ( x i j ) n × n = i = 1 n j = 1 n x i j E i j

1. 首先证明对于任意一个 Fn×n F n × n 上的范数 , ‖ ⋅ ‖ ,
函数 φ:Fn×nR,φ(X)=X φ : F n × n ↦ R , φ ( X ) = ‖ X ‖ L2 L 2 范数下是连续的。
对于任意一个 Fn×n F n × n 上的范数 ,X,YFn×n, ‖ ⋅ ‖ , ∀ X , Y ∈ F n × n ,
|φ(X)φ(Y)|=|XY|XY | φ ( X ) − φ ( Y ) | = | ‖ X ‖ − ‖ Y ‖ | ≤ ‖ X − Y ‖
=i=1nj=1nxijEiji=1nj=1nyijEij = ‖ ∑ i = 1 n ∑ j = 1 n x i j E i j − ∑ i = 1 n ∑ j = 1 n y i j E i j ‖
=i=1nj=1n(xijyij)Eij = ‖ ∑ i = 1 n ∑ j = 1 n ( x i j − y i j ) E i j ‖
i=1nj=1n(xijyij)Eij ≤ ∑ i = 1 n ∑ j = 1 n ‖ ( x i j − y i j ) E i j ‖
=i=1nj=1n|xijyij|Eij = ∑ i = 1 n ∑ j = 1 n | x i j − y i j | ‖ E i j ‖
0,XY → 0 , X → Y
因此 φ(X) φ ( X ) 是连续函数。
2. 于是 φ(Y;α)=Yα φ ( Y ; α ) = ‖ Y ‖ α 在有界闭集 S={
YFn×n:Y2=1}
S = { Y ∈ F n × n : ‖ Y ‖ 2 = 1 }
上连续,又 φ(Y;α) φ ( Y ; α ) S S 恒大于零,因此在
S

S
内必有最大值 Cmax>0, C max > 0 , 最小值 Cmin>0, C min > 0 ,
同理可得 φ(Y;β)=Yβ φ ( Y ; β ) = ‖ Y ‖ β S S 内必有最大值
Dmax>0,

D max > 0 ,
最小值 Dmin>0, D min > 0 ,
3. XFn×n, ∀ X ∈ F n × n , X=0, X = 0 , 则命题显然成立。
否则 X0, X ≠ 0 , Y=1X2X, Y = 1 ‖ X ‖ 2 X ,
Y2=1, ‖ Y ‖ 2 = 1 , 因此 YS, Y ∈ S ,
于是 XβXα=YβYαX2X2 ‖ X ‖ β ‖ X ‖ α = ‖ Y ‖ β ‖ Y ‖ α ‖ X ‖ 2 ‖ X ‖ 2
=φ(Y;α)φ(Y;β)[DminCmax,DmaxCmin] = φ ( Y ; α ) φ ( Y ; β ) ∈ [ D min C max , D max C min ]
C1=DminCmax,C2=DmaxCmin, C 1 = D min C max , C 2 = D max C min , 则:
0<C1XβXαC2 0 < C 1 ≤ ‖ X ‖ β ‖ X ‖ α ≤ C 2

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/193648.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • phpstorm2021永久激活 3月最新注册码

    phpstorm2021永久激活 3月最新注册码,https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月15日
    156
  • 数据仓库(四)之ETL开发

    数据仓库(四)之ETL开发 概述 ETL是数据仓库的后台,主要包含抽取、清洗、规范化、提交四个步骤,传统数据仓库一般分为四层模型。               分层的作用                                      STG层  在维度建模阶段已经确定了源系统,而且对源系统进行了…

    2022年6月13日
    34
  • 矩阵秩和伴随矩阵秩的关系「建议收藏」

    矩阵秩和伴随矩阵秩的关系「建议收藏」

    2022年5月30日
    123
  • 60mph和kmh换算_mph换算器(速度计算器在线)「建议收藏」

    60mph和kmh换算_mph换算器(速度计算器在线)「建议收藏」mph是英里每时的意思吗?如何换算成千米每时?100mph=160.9kmhmph是英里每时的意思吗?如何换算成千米每时?mph是米/小时的意思mitersperhour也可写成m/hAkm/h=A*1000m/h玩极品飞车12,上面的速度是mph,怎么换算啊1英里=5280英尺=63360英寸=1609.344米汽车速度表上,英制的MPH与公制的km/…

    2022年6月28日
    84
  • 人工智能大作业—-八数码问题

    人工智能大作业—-八数码问题基于搜索策略的八数码问题求解大作业题目:基于搜索策略的八数码问题求解大作业目的:加深对搜索策略的理解,尤其是对启发式搜索的基本原理的理解,使学生能够通过编程实现图搜索的基本方法和启发式搜索算法,并能够解决一些应用问题。大作业要求:使用盲目搜索中的宽度优先搜索算法或者使用启发式搜索中的全局择优搜索或A*算法。每人提交一份大作业报告,该报告包括设计、实现、测试、实验对比结…

    2022年7月12日
    44
  • vue 路由部署服务器子目录问题

    vue 路由部署服务器子目录问题

    2021年10月11日
    112

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号