python实现手写数字识别(小白入门)「建议收藏」

python实现手写数字识别(小白入门)「建议收藏」手写数字识别(小白入门)今早刚刚上了节实验课,关于逻辑回归,所有手有点刺挠就想发个博客,作为刚刚入门的小白,看到代码运行成功就有点小激动,这个实验没啥含金量,所以路过的大牛不要停留,我怕你们吐槽。废话少说,直接看实验结果:这里写目录标题手写数字识别(小白入门)1.数据预处理2.训练模型3.测试模型,保存4.调用模型5.完整代码1.数据预处理其实呢,原理很简单,就是使用多变量逻辑回归,将训练28*28图片的灰度值转换成一维矩阵,这就变成了求784个特征向量1个标签的逻辑回归问题。代码如下:

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

手写数字识别(小白入门)

今早刚刚上了节实验课,关于逻辑回归,所以手有点刺挠就想发个博客,作为刚刚入门的小白,看到代码运行成功就有点小激动,这个实验没啥含金量,所以路过的大牛不要停留,我怕你们吐槽哈哈。

实验结果:
在这里插入图片描述 在这里插入图片描述

1.数据预处理

其实呢,原理很简单,就是使用多变量逻辑回归,将训练28*28图片的灰度值转换成一维矩阵,这就变成了求784个特征向量1个标签的逻辑回归问题。代码如下:

#数据预处理
trainData = np.loadtxt(open('digits_training.csv', 'r'), delimiter=",",skiprows=1)#装载数据
MTrain, NTrain = np.shape(trainData)  #行列数
print("训练集:",MTrain,NTrain)
xTrain = trainData[:,1:NTrain]
xTrain_col_avg = np.mean(xTrain, axis=0) #对各列求均值
xTrain =(xTrain- xTrain_col_avg)/255  #归一化
yTrain = trainData[:,0]

2.训练模型

对于数学差的一批的我来说,学习算法真的是太太太扎心了,好在具体算法封装在了sklearn库中。简单两行代码即可完成。具体参数的含义随随便便一搜到处都是,我就不班门弄斧了,每次看见算法除了头晕啥感觉没有。

model = LogisticRegression(solver='lbfgs', multi_class='multinomial', max_iter=500)
model.fit(xTrain, yTrain)

3.测试模型,保存

接下来测试一下模型,准确率能达到百分之90,也不算太高,训练数据集本来也不是很多。
为了方便,所以把模型保存下来,不至于运行一次就得训练一次。

#测试模型
testData = np.loadtxt(open('digits_testing.csv', 'r'), delimiter=",",skiprows=1)
MTest,NTest = np.shape(testData)
print("测试集:",MTest,NTest)
xTest = testData[:,1:NTest]
xTest = (xTest-xTrain_col_avg) /255   # 使用训练数据的列均值进行处理
yTest = testData[:,0]
yPredict = model.predict(xTest)
errors = np.count_nonzero(yTest - yPredict) #返回非零项个数
print("预测完毕。错误:", errors, "条")
print("测试数据正确率:", (MTest - errors) / MTest)

'''================================='''
#保存模型

# 创建文件目录
dirs = 'testModel'
if not os.path.exists(dirs):
    os.makedirs(dirs)
joblib.dump(model, dirs+'/model.pkl')
print("模型已保存")

https://download.csdn.net/download/qq_45874897/12427896[这里是训练好的模型,免费下载]

4.调用模型

既然模型训练好了,就来放几张图片调用模型试一下看看怎么样
导入要测试的图片,然后更改大小为28*28,将图片二值化减小误差。
为了让结果看起来有逼格,所以最后把图片和识别数字同实显示出来。

import  cv2
import numpy as np
from sklearn.externals import joblib

map=cv2.imread(r"C:\Users\lenovo\Desktop\[DX6@[C$%@2RS0R2KPE[W@V.png")
GrayImage = cv2.cvtColor(map, cv2.COLOR_BGR2GRAY)
ret,thresh2=cv2.threshold(GrayImage,127,255,cv2.THRESH_BINARY_INV)
Image=cv2.resize(thresh2,(28,28))
img_array = np.asarray(Image)
z=img_array.reshape(1,-1)

'''================================================'''

model = joblib.load('testModel'+'/model.pkl')
yPredict = model.predict(z)
print(yPredict)
y=str(yPredict)
cv2.putText(map,y, (10,20), cv2.FONT_HERSHEY_SIMPLEX,0.7,(0,0,255), 2, cv2.LINE_AA)
cv2.imshow("map",map)
cv2.waitKey(0)

5.完整代码

test1.py

import numpy as np
from sklearn.linear_model import LogisticRegression
import os
from sklearn.externals import joblib

#数据预处理
trainData = np.loadtxt(open('digits_training.csv', 'r'), delimiter=",",skiprows=1)#装载数据
MTrain, NTrain = np.shape(trainData)  #行列数
print("训练集:",MTrain,NTrain)
xTrain = trainData[:,1:NTrain]
xTrain_col_avg = np.mean(xTrain, axis=0) #对各列求均值
xTrain =(xTrain- xTrain_col_avg)/255  #归一化
yTrain = trainData[:,0]

'''================================='''
#训练模型
model = LogisticRegression(solver='lbfgs', multi_class='multinomial', max_iter=500)
model.fit(xTrain, yTrain)
print("训练完毕")

'''================================='''
#测试模型
testData = np.loadtxt(open('digits_testing.csv', 'r'), delimiter=",",skiprows=1)
MTest,NTest = np.shape(testData)
print("测试集:",MTest,NTest)
xTest = testData[:,1:NTest]
xTest = (xTest-xTrain_col_avg) /255   # 使用训练数据的列均值进行处理
yTest = testData[:,0]
yPredict = model.predict(xTest)
errors = np.count_nonzero(yTest - yPredict) #返回非零项个数
print("预测完毕。错误:", errors, "条")
print("测试数据正确率:", (MTest - errors) / MTest)

'''================================='''
#保存模型

# 创建文件目录
dirs = 'testModel'
if not os.path.exists(dirs):
    os.makedirs(dirs)
joblib.dump(model, dirs+'/model.pkl')
print("模型已保存")

运行结果

在这里插入图片描述

test2.py


import  cv2
import numpy as np
from sklearn.externals import joblib

map=cv2.imread(r"C:\Users\lenovo\Desktop\[DX6@[C$%@2RS0R2KPE[W@V.png")
GrayImage = cv2.cvtColor(map, cv2.COLOR_BGR2GRAY)
ret,thresh2=cv2.threshold(GrayImage,127,255,cv2.THRESH_BINARY_INV)
Image=cv2.resize(thresh2,(28,28))
img_array = np.asarray(Image)
z=img_array.reshape(1,-1)

'''================================================'''

model = joblib.load('testModel'+'/model.pkl')
yPredict = model.predict(z)
print(yPredict)
y=str(yPredict)
cv2.putText(map,y, (10,20), cv2.FONT_HERSHEY_SIMPLEX,0.7,(0,0,255), 2, cv2.LINE_AA)
cv2.imshow("map",map)
cv2.waitKey(0)

提供几张样本用来测试:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

实验中还有很多地方需要优化,比如数据集太少,泛化能力太差,用样本的数据测试正确率挺高,但是用我自己手写的字正确率就太低了,可能我字写的太丑,哎,还是自己太菜了,以后得多学学算法了。

训练好的模型放在了上面。最后我也把数据集放到这儿。链接:https://pan.baidu.com/s/1PfQ5Jp3A8eN4SxFnA12-1Q
提取码:tpy6

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/193983.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 微信小程序定位权限怎么打开_怎么用微信定位朋友的位置

    微信小程序定位权限怎么打开_怎么用微信定位朋友的位置最近有客户提了一个需求,要求登陆考试系统的测评者记录下当时的位置。web形式的虽然可以通过IP来定位,但是IP太容易作假了,所以为了比较高的准确性,最后决定用微信小程序,虽然也有作假的可能,但比web形式要好一些。一、准备工作既然要定位,那么肯定需要找到跟地图相关的功能API,查找微信开发文档,因为我们这里只是需要记录地位功能,不需要打开地图,所以只使用wx.getLocatio…

    2025年8月12日
    2
  • python3.0菜鸟教程100例_python入门到精通教程完整版

    python3.0菜鸟教程100例_python入门到精通教程完整版Python3100例原题地址:http://www.runoob.com/python/python-100-examples.htmlgit地址:https://github.com/RichardFu123/Python100Cases原例为Python2.7版本重写过程中有不少是随意发挥的重写运行版本:Python3.7总…

    2022年9月20日
    3
  • 用js来实现那些数据结构10(集合02-集合的操作)[通俗易懂]

    前一篇文章我们一起实现了自定义的set集合类。那么这一篇我们来给set类增加一些操作方法。那么在开始之前,还是有必要解释一下集合的操作有哪些。便于我们更快速的理解代码。1、并集:对于给定的两个集合,

    2022年3月25日
    37
  • Java单例模式实现方式

    Java单例模式实现方式懒汉式-非线程安全publicclassLazyNoSafe{privatestaticLazyNoSafeinstance;publicstaticLazyNoSafegetInstance(){if(instance==null){instance=newLazyNoSafe();…

    2022年7月25日
    7
  • 在Ubuntu下使用workon时出现workon: command not found错误「建议收藏」

    在Ubuntu下使用workon时出现workon: command not found错误「建议收藏」然后执行1.接着,我们需要配置下~/.bashrc,将virtualenv添加进去:    即将:    exportWORKON_HOME=$HOME/.virtualenvs    source/usr/local/bin/virtualenvwrapper.sh    复制到~/.bashrc中,保存退出2.让bashrc生效:执行source~/.bashrc命令…

    2025年6月6日
    5
  • transparentblt[通俗易懂]

    transparentblt[通俗易懂]透明位图的显示作者:王骏下载本文示例代码包含透明色的位图的绘制方法有多种,最简单的方法是调用现成的函数:TransparentBlt,也可以通过自己的代码实现类似TransparentBlt的功能,实现过程也有两种形式,一种是事先做一张掩码位图,另一种是动态生成掩码位图。本文将介绍动态生成掩码位图绘制具有透明区域位图的方法。一、TransparentBlt函数的使用TransparentBlt

    2025年8月25日
    2

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号