python实现手写数字识别(小白入门)「建议收藏」

python实现手写数字识别(小白入门)「建议收藏」手写数字识别(小白入门)今早刚刚上了节实验课,关于逻辑回归,所有手有点刺挠就想发个博客,作为刚刚入门的小白,看到代码运行成功就有点小激动,这个实验没啥含金量,所以路过的大牛不要停留,我怕你们吐槽。废话少说,直接看实验结果:这里写目录标题手写数字识别(小白入门)1.数据预处理2.训练模型3.测试模型,保存4.调用模型5.完整代码1.数据预处理其实呢,原理很简单,就是使用多变量逻辑回归,将训练28*28图片的灰度值转换成一维矩阵,这就变成了求784个特征向量1个标签的逻辑回归问题。代码如下:

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

手写数字识别(小白入门)

今早刚刚上了节实验课,关于逻辑回归,所以手有点刺挠就想发个博客,作为刚刚入门的小白,看到代码运行成功就有点小激动,这个实验没啥含金量,所以路过的大牛不要停留,我怕你们吐槽哈哈。

实验结果:
在这里插入图片描述 在这里插入图片描述

1.数据预处理

其实呢,原理很简单,就是使用多变量逻辑回归,将训练28*28图片的灰度值转换成一维矩阵,这就变成了求784个特征向量1个标签的逻辑回归问题。代码如下:

#数据预处理
trainData = np.loadtxt(open('digits_training.csv', 'r'), delimiter=",",skiprows=1)#装载数据
MTrain, NTrain = np.shape(trainData)  #行列数
print("训练集:",MTrain,NTrain)
xTrain = trainData[:,1:NTrain]
xTrain_col_avg = np.mean(xTrain, axis=0) #对各列求均值
xTrain =(xTrain- xTrain_col_avg)/255  #归一化
yTrain = trainData[:,0]

2.训练模型

对于数学差的一批的我来说,学习算法真的是太太太扎心了,好在具体算法封装在了sklearn库中。简单两行代码即可完成。具体参数的含义随随便便一搜到处都是,我就不班门弄斧了,每次看见算法除了头晕啥感觉没有。

model = LogisticRegression(solver='lbfgs', multi_class='multinomial', max_iter=500)
model.fit(xTrain, yTrain)

3.测试模型,保存

接下来测试一下模型,准确率能达到百分之90,也不算太高,训练数据集本来也不是很多。
为了方便,所以把模型保存下来,不至于运行一次就得训练一次。

#测试模型
testData = np.loadtxt(open('digits_testing.csv', 'r'), delimiter=",",skiprows=1)
MTest,NTest = np.shape(testData)
print("测试集:",MTest,NTest)
xTest = testData[:,1:NTest]
xTest = (xTest-xTrain_col_avg) /255   # 使用训练数据的列均值进行处理
yTest = testData[:,0]
yPredict = model.predict(xTest)
errors = np.count_nonzero(yTest - yPredict) #返回非零项个数
print("预测完毕。错误:", errors, "条")
print("测试数据正确率:", (MTest - errors) / MTest)

'''================================='''
#保存模型

# 创建文件目录
dirs = 'testModel'
if not os.path.exists(dirs):
    os.makedirs(dirs)
joblib.dump(model, dirs+'/model.pkl')
print("模型已保存")

https://download.csdn.net/download/qq_45874897/12427896[这里是训练好的模型,免费下载]

4.调用模型

既然模型训练好了,就来放几张图片调用模型试一下看看怎么样
导入要测试的图片,然后更改大小为28*28,将图片二值化减小误差。
为了让结果看起来有逼格,所以最后把图片和识别数字同实显示出来。

import  cv2
import numpy as np
from sklearn.externals import joblib

map=cv2.imread(r"C:\Users\lenovo\Desktop\[DX6@[C$%@2RS0R2KPE[W@V.png")
GrayImage = cv2.cvtColor(map, cv2.COLOR_BGR2GRAY)
ret,thresh2=cv2.threshold(GrayImage,127,255,cv2.THRESH_BINARY_INV)
Image=cv2.resize(thresh2,(28,28))
img_array = np.asarray(Image)
z=img_array.reshape(1,-1)

'''================================================'''

model = joblib.load('testModel'+'/model.pkl')
yPredict = model.predict(z)
print(yPredict)
y=str(yPredict)
cv2.putText(map,y, (10,20), cv2.FONT_HERSHEY_SIMPLEX,0.7,(0,0,255), 2, cv2.LINE_AA)
cv2.imshow("map",map)
cv2.waitKey(0)

5.完整代码

test1.py

import numpy as np
from sklearn.linear_model import LogisticRegression
import os
from sklearn.externals import joblib

#数据预处理
trainData = np.loadtxt(open('digits_training.csv', 'r'), delimiter=",",skiprows=1)#装载数据
MTrain, NTrain = np.shape(trainData)  #行列数
print("训练集:",MTrain,NTrain)
xTrain = trainData[:,1:NTrain]
xTrain_col_avg = np.mean(xTrain, axis=0) #对各列求均值
xTrain =(xTrain- xTrain_col_avg)/255  #归一化
yTrain = trainData[:,0]

'''================================='''
#训练模型
model = LogisticRegression(solver='lbfgs', multi_class='multinomial', max_iter=500)
model.fit(xTrain, yTrain)
print("训练完毕")

'''================================='''
#测试模型
testData = np.loadtxt(open('digits_testing.csv', 'r'), delimiter=",",skiprows=1)
MTest,NTest = np.shape(testData)
print("测试集:",MTest,NTest)
xTest = testData[:,1:NTest]
xTest = (xTest-xTrain_col_avg) /255   # 使用训练数据的列均值进行处理
yTest = testData[:,0]
yPredict = model.predict(xTest)
errors = np.count_nonzero(yTest - yPredict) #返回非零项个数
print("预测完毕。错误:", errors, "条")
print("测试数据正确率:", (MTest - errors) / MTest)

'''================================='''
#保存模型

# 创建文件目录
dirs = 'testModel'
if not os.path.exists(dirs):
    os.makedirs(dirs)
joblib.dump(model, dirs+'/model.pkl')
print("模型已保存")

运行结果

在这里插入图片描述

test2.py


import  cv2
import numpy as np
from sklearn.externals import joblib

map=cv2.imread(r"C:\Users\lenovo\Desktop\[DX6@[C$%@2RS0R2KPE[W@V.png")
GrayImage = cv2.cvtColor(map, cv2.COLOR_BGR2GRAY)
ret,thresh2=cv2.threshold(GrayImage,127,255,cv2.THRESH_BINARY_INV)
Image=cv2.resize(thresh2,(28,28))
img_array = np.asarray(Image)
z=img_array.reshape(1,-1)

'''================================================'''

model = joblib.load('testModel'+'/model.pkl')
yPredict = model.predict(z)
print(yPredict)
y=str(yPredict)
cv2.putText(map,y, (10,20), cv2.FONT_HERSHEY_SIMPLEX,0.7,(0,0,255), 2, cv2.LINE_AA)
cv2.imshow("map",map)
cv2.waitKey(0)

提供几张样本用来测试:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

实验中还有很多地方需要优化,比如数据集太少,泛化能力太差,用样本的数据测试正确率挺高,但是用我自己手写的字正确率就太低了,可能我字写的太丑,哎,还是自己太菜了,以后得多学学算法了。

训练好的模型放在了上面。最后我也把数据集放到这儿。链接:https://pan.baidu.com/s/1PfQ5Jp3A8eN4SxFnA12-1Q
提取码:tpy6

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/193983.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 帝国cms“建立目录不成功,请检查目录权限”的解决方法

    帝国cms“建立目录不成功,请检查目录权限”的解决方法

    2021年11月17日
    38
  • 计算机中完成全选的快捷键,怎么全选-很实用!word中全选的快捷键介绍及使用方法…[通俗易懂]

    计算机中完成全选的快捷键,怎么全选-很实用!word中全选的快捷键介绍及使用方法…[通俗易懂]全选快捷键可以提高我们在操作word时工作效率,在操作Word2003中怎么对文档中的文字进行全选呢?下面为大家提供几种全选的方法,绝对好用。Word怎样全选?方法一、使用Word全选快捷键“Ctrl+A”进行全选(也适用于电子表格);方法二、展开菜单栏中的“编辑”,然后选择“全选”按钮来全选;方法三、利用鼠标全选,鼠标左键按住不放然后拖动到最后也可以全选;方法四、鼠标单击开始部分,然后在最末尾部…

    2022年5月9日
    134
  • emgucv 抠图[通俗易懂]

    我的环境的KinectSDK2.0+EmguCV3.0.0依旧还是WinFrom和ImageBox因为需要用到BodyIndex的数据,但BodyIndex的分辨率和RGB图像的分辨率不同,所以需要用的CoordinateMap类中的坐标转换函数。然后直接对colorimage的像素点进行操作。同样,需要用的指针,要把项目调整为允许不安全的代码。代码和注释如

    2022年4月12日
    84
  • ios激活成功教程软件_qt.qpa.plugin:Could not

    ios激活成功教程软件_qt.qpa.plugin:Could not注意:一定要手动创建文件夹,在相应文件夹下进行操作,否则无法成功生成注册码激活成功教程步骤:1.安装qtp,一路默认下来,到要求输入License的界面2.拷贝mgn-mqt82.exe(下载)到C:\ProgramFiles\MercuryInteractive(自己手动创建)文件夹下3.自己手动创建C:\ProgramFiles\CommonFiles\Mercury

    2022年10月1日
    2
  • 解决VMware虚拟机桥接模式无法上网「建议收藏」

    解决VMware虚拟机桥接模式无法上网「建议收藏」步骤1:查看本地以太网属性是否安装VMwareBridgeProtocol控制面板>>网络和Internet>>网络连接>>以太网右键属性>>查看是否有安装VMwareBridgeProtocol步骤2:查看VMware虚拟网络编辑器的VMnet0桥接模式设置编辑>>虚拟网络编辑器>>桥接模式>&…

    2022年4月29日
    395
  • pycharm 设置环境_pycharm 虚拟环境

    pycharm 设置环境_pycharm 虚拟环境今天有点小收获,做一点积累吧。pycharm使用的是2018.3.1专业版,python使用的是3.7.1首先是新建工程,打开pycharm之后,面对窗口如下:选择createnewproj

    2022年8月2日
    8

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号