克莱因瓶莫比乌斯带_克莱因瓶剪莫比乌斯带

克莱因瓶莫比乌斯带_克莱因瓶剪莫比乌斯带  [克莱茵瓶&莫比乌斯带]在1882年,著名数学家菲立克斯·克莱因(FelixKlein)发现了后来以他的名字命名的著名“瓶子”。这是一个象球面那样封闭的(也就是说没有边)曲面,但是它却只有一个面。在图片上我们看到,克莱因瓶的确就象是一个瓶子。但是它没有瓶底,它的瓶颈被拉长,然后似乎是穿过了瓶壁,最后瓶颈和瓶底圈连在了一起。如果瓶颈不穿过瓶壁而…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

 
克莱因瓶莫比乌斯带_克莱因瓶剪莫比乌斯带
 

[ 克莱茵瓶&莫比乌斯带]

1882 年,著名数学家菲立克斯·克莱因(Felix Klein) 发现了后来以他的名字命名的著名“瓶子”。这是一个象球面那样封闭的(也就是说没有边)曲面,但是它却只有一个面。在图片上我们看到,克莱因瓶的确就象是一个瓶子。但是它没有瓶底,它的瓶颈被拉长,然后似乎是穿过了瓶壁,最后瓶颈和瓶底圈连在了一起。如果瓶颈不穿过瓶壁而从另一边和瓶底圈相连的话,我们就会得到一个轮胎面。  

[ 转自铁血社区 http://bbs.tiexue.net/ ]

 

我们可以说一个球有两个面——外面和内面,如果一只蚂蚁在一个球的外表面上爬行,那么如果它不在球面上咬一个洞,就无法爬到内表面上去。轮胎面也是一样,有内外表面之分。但是克莱因瓶却不同,我们很容易想象,一只爬在“瓶外”的蚂蚁,可以轻松地通过瓶颈而爬到“瓶内”去——事实上克莱因瓶并无内外之分!在数学上,我们称克莱因瓶是一个不可定向的二维紧致流型,而球面或轮胎面是可定向的二维紧致流型。

如果我们观察克莱因瓶的图片,有一点似乎令人困惑——克莱因瓶的瓶颈和瓶身是相交的,换句话说,瓶颈上的某些点和瓶壁上的某些点占据了三维空间中的同一个位置。但是事实却非如此。事实是:克莱因瓶是一个在四维空间中才可能真正表现出来的曲面,如果我们一定要把它表现在我们生活的三维空间中,我们只好将就点,只好把它表现得似乎是自己和自己相交一样。事实上,克莱因瓶的瓶颈是穿过了第四维空间再和瓶底圈连起来的,并不穿过瓶壁。这是怎么回事呢?

我们用扭节来打比方。看上面这个图形,如果我们把它看作平面上的曲线的话,那么它似乎自身相交,再一看似乎又断成了三截。但其实很容易明白,这个图形其实是三维空间中的曲线,它并不和自己相交,而且是连续不断的一条曲线。在平面上一条曲线自然做不到这样,但是如果有第三维的话,它就可以穿过第三维来避开和自己相交。只是因为我们要把它画在二维平面上时,只好将就一点,把它画成相交或者断裂了的样子。克莱因瓶也一样,这是一个事实上处于四维空间中的曲面。在我们这个三维空间中,即使是最高明的能工巧匠,也不得不把它做成自身相交的模样;就好象最高明的画家,在纸上画扭

 

结的时候也不得不把它们画成自身相交的模样。

·     从拓扑学角度上看,克莱因瓶可以定义为矩阵[01] × [01] ,边定义为 (0y) ~ (1y) 条件 0 y 1 (x0) ~ (1-x1) 条件 0 x 1 可以用图表示为

  ——->

[ 转自铁血社区 http://bbs.tiexue.net/ ]

  ^ ^

  | |

  <——

  就像麦比乌斯带(又名:莫比乌斯带)一样,克莱因瓶没有定向性。但是与之不同的是,克莱因瓶是一个闭合的曲面,也就是说它没有边界。麦比乌斯带可以在三维的欧几里德空间中嵌入,克莱因瓶只能适用于四维空间。

  克莱因瓶与麦比乌斯带 大家大概都知道麦比乌斯带。你可以把一条纸带的一段扭180 度,再和另一端粘起来来得到一条麦比乌斯带的模型。这也是一个只有一麦比乌斯带、一个面的曲面,但是和球面、轮胎面和克莱因瓶不同的是,它有边(注意,它只有一条边)。如果我们把两条麦比乌斯带沿着它们唯一的边粘合起来,你就得到了一个克莱因瓶(当然不要忘了,我们必须在四维空间中才能真正有可能完成这个粘合,否则的话就不得不把纸撕破一点)。同样地,如果把一个克莱因瓶适当地剪开来,我们就能得到两条麦比乌斯带。除了我们上面看到的克莱因瓶的模样,还有一种不太为人所知的“8字形”克莱因瓶。它看起来和上面的曲面完全不同,但是在四维空间中它们其实就是同一个曲面——克莱因瓶。

  实际上,可以说克莱因瓶是一个三度的麦比乌斯带。我们知道,在平面上画一个圆,再在圆内放一样东西,假如在二度空间中将它拿出来,就不得不越过圆周。但在三度空间中,很容易不越过圆周就将其拿出来,放到圆外。将物体的轨迹连同原来的圆投影到二度空间中,就是一个“二维克莱因瓶”,即麦比乌斯带(这里的莫比乌斯带是指拓扑意义上的莫比乌斯带)。再设想一下,在我们的三度空间中,不可能在不打破蛋壳的前提下从鸡蛋中取出蛋黄,但在四度空间里却可以。将蛋黄的轨迹连同蛋壳投影在三度空间中,必然可以看到一个克莱因瓶。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/194386.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • tree 命令安装

    tree 命令安装一、用yum安装tree命令yuminstall-ytree二、下载包安装下载安装包yuminstall-ywgetwgethttp://mama.indstate.edu/users/ice/tree/src/tree-1.8.0.tgztar-zxvftree-1.8.0.tgz-C/opt/softcdtree-1.8.0/yuminstall-ymakemakeinstall测试使用,命令:treemake:gcc:命令未找到make:**

    2022年7月25日
    14
  • linux 下 route命令,linux route命令详细说明和使用「建议收藏」

    linux 下 route命令,linux route命令详细说明和使用「建议收藏」linux下的route命令,虽然在嵌入式开发中很少用到,但当涉及到简单静态路由开发时,还是有用的。此外,在配置linux网络时也有可能用到。本文旨在了解linuxroute命令及其使用。作用route命令用于查看和配置linux内核路由表,也就是用来查看和配置linux的静态路由表。描述route命令操作基于linux内核路由表,它的主要作用是创建一个静态路由让指定的一个主机或者一个网络通过…

    2022年7月18日
    16
  • mysql show status详解

    mysql show status详解

    2021年8月1日
    68
  • 第七届蓝桥杯(软件类)C++决赛A组题解

    第七届蓝桥杯(软件类)C++决赛A组题解文章目录题目链接A组真题题目结构第一题随意组合第二题拼棋盘第三题打靶第四题路径之谜第五题碱基第六题圆圈舞(待补)题目链接A组真题题目结构题目类型第一题随意组合结果填空第二题拼棋盘结果填空第三题打靶代码填空第四题路径之谜程序设计第五题碱基程序设计第六题圆圈舞程序设计第一题随意组合问题重现小明被绑架到X星球的巫师W那里。其时,W正在玩弄两组数据(2358)和(1467

    2022年7月24日
    8
  • css分页效果_asp中数字分页样式

    css分页效果_asp中数字分页样式CSS分页实例简单分页如果你的网站有很多个页面,你就需要使用分页来为每个页面做导航。ul.pagination{display:inline-block;padding:0;marg

    2022年8月6日
    4
  • J2EE架构师手册

    J2EE架构师手册 

    2022年6月29日
    26

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号