cbow模型详解_drude模型的三个基本假设

cbow模型详解_drude模型的三个基本假设初始化:初始化方法的参数包括词汇个数vocab_size和中间层的神经元个数hidden_size。首先生成两个权重(W_in和W_out),并用一些小的随机值初始化这两个权重。设置astype(‘f’),初始化将使用32位的浮点数。生成层:生成两个输入侧的MatMul层、一个输出侧的MatMul层,以及一个SoftmaxwithLoss层。保存权重和梯度:将该神经网络中使用的权重参数和梯度分别保存在列表类型的成员变量params和grads中。正向传播for.

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

在这里插入图片描述

初始化:初始化方法的参数包括词汇个数 vocab_size 和中间层的神经元个数 hidden_size。首先生成两个权重(W_in 和 W_out),并用一些小的随机值初始化这两个权重。设置astype(‘f’),初始化将使用 32 位的浮点数。

生成层:生成两个输入侧的 MatMul 层、一个输出侧的 MatMul 层,以及一个 Softmax with Loss 层。

保存权重和梯度:将该神经网络中使用的权重参数和梯度分别保存在列表类型的成员变量 params 和 grads 中。

正向传播 forward() 函数:该函数接收参数 contexts 和 target,并返回损失(loss)。这两个参数结构如下。

在这里插入图片描述

contexts 是一个三维 NumPy 数组,第 0 维的元素个数是 mini-batch 的数量,第 1 维的元素个数是上下文的窗口大小,第 2 维表示 one-hot 向量。下面这个代码取出来的是什么?

 h0 = self.in_layer0.forward(contexts[:, 0])
 h1 = self.in_layer1.forward(contexts[:, 1])

jym做了一个测试:

import sys
sys.path.append('..')
from common.util import preprocess #, create_co_matrix, most_similar
from common.util import create_contexts_target, convert_one_hot

text = 'You say goodbye and I say hello.'
corpus, word_to_id, id_to_word = preprocess(text)
contexts, target = create_contexts_target(corpus, window_size=1)
#print(contexts)
#print(target)
vocab_size = len(word_to_id)
target = convert_one_hot(target, vocab_size)
contexts = convert_one_hot(contexts, vocab_size)
print(contexts[:, 0])

输出:然后从输出就知道了,取的是不同target的左边的单词。

[[1 0 0 0 0 0 0]
 [0 1 0 0 0 0 0]
 [0 0 1 0 0 0 0]
 [0 0 0 1 0 0 0]
 [0 0 0 0 1 0 0]
 [0 1 0 0 0 0 0]]

反向传播 backward():神经网络的反向传播在与正向传播相反的方向上传播梯度。这个反向传播从 1 出发,并将其传向 Softmax with Loss 层。然后,将 Softmax with Loss 层的反向传播的输出 ds 传到输出侧的 MatMul 层。“×”的反向传播将正向传播时的输入值“交换”后乘以梯度。“+”的反向传播将梯度“原样”传播。

在这里插入图片描述

这个backward函数里面调用的是之前写好的层的反向传播函数,比如loss_layer.backward(dout),因此backward函数用完之后,各个权重参数的梯度就保存在了成员变量 grads 中(这是之前写的层里面的反向传播函数来实现的)。先调用 forward() 函数,再调用 backward() 函数,grads 列表中的梯度被更新。

import sys
sys.path.append('..')
import numpy as np
from common.layers import MatMul, SoftmaxWithLoss


class SimpleCBOW:
    def __init__(self, vocab_size, hidden_size):
        V, H = vocab_size, hidden_size

        # 初始化权重
        W_in = 0.01 * np.random.randn(V, H).astype('f')
        W_out = 0.01 * np.random.randn(H, V).astype('f')

        # 生成层
        self.in_layer0 = MatMul(W_in)
        self.in_layer1 = MatMul(W_in)
        self.out_layer = MatMul(W_out)
        self.loss_layer = SoftmaxWithLoss()

        # 将所有的权重和梯度整理到列表中
        layers = [self.in_layer0, self.in_layer1, self.out_layer]
        self.params, self.grads = [], []
        for layer in layers:
            self.params += layer.params
            self.grads += layer.grads

        # 将单词的分布式表示设置为成员变量
        self.word_vecs = W_in

    def forward(self, contexts, target):
        h0 = self.in_layer0.forward(contexts[:, 0])
        h1 = self.in_layer1.forward(contexts[:, 1])
        h = (h0 + h1) * 0.5
        score = self.out_layer.forward(h)
        loss = self.loss_layer.forward(score, target)
        return loss

    def backward(self, dout=1):
        ds = self.loss_layer.backward(dout)
        da = self.out_layer.backward(ds)
        da *= 0.5
        self.in_layer1.backward(da)
        self.in_layer0.backward(da)
        return None
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/196424.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • jvm优化(二)JVM 内存大小设置

    jvm优化(二)JVM 内存大小设置Tomcat本身不能直接在计算机上运行,需要依赖于硬件基础之上的操作系统和一个Java虚拟机。Tomcat的内存溢出本质就是JVM内存溢出,所以在本文开始时,应该先对JavaJVM有关内存方面的知识进行详细介绍。一、JavaJVM内存介绍JVM管理两种类型的内存,堆和非堆。按照官方的说法:“Java虚拟机具有一个堆,堆是运行时数据区域,所有类实例和数组的内存均从此处分配。堆是在Java虚拟

    2022年6月5日
    90
  • latex插入编号{itemize}和{enumerate}

    latex插入编号{itemize}和{enumerate}{itemize}命令 {itemize}命令对文本进行简单的排列,不是采用序号,而是实心圆点符号。这个命令需要和\item配合使用。作为演示,输入如下代码;编译后可以看出在每一段前都加上了实心圆点符号进行排列。 如果我们不想使用…

    2022年10月22日
    0
  • 很黄很暴力国际版「建议收藏」

    很黄很暴力国际版「建议收藏」英文版:Veryeroticandveryviolent正体中文版:很黃很暴力大陆版:很黄很暴力日本版:すごくエッチで乱暴でならない荷兰版:Zeergeelenzeerhevig葡萄牙版:Muitoamareloemuitoviolento俄语版:Оченьжелтыйцветиоченьяростная法语版:Trèsjauneettrèsviolent

    2022年10月14日
    0
  • matlab 查看函数,如何查看MATLAB函数的源代码 | 学步园「建议收藏」

    matlab 查看函数,如何查看MATLAB函数的源代码 | 学步园「建议收藏」如何查看MATLAB函数的源代码大家都知道MATLAB是开源的,所有的函数源代码都是可以查看的。但是,对于初学者来说,可能还不知道如何查看MATLAB函数的源代码。函数之  type假设需要查看function_name的源代码,在命令窗口中键入 type  function_name即:>>typeimreadfunction[X,map,alpha]=imread(v…

    2022年9月13日
    0
  • zencart模板文件列表

    zencart模板文件列表为什么80%的码农都做不了架构师?>>>…

    2022年7月27日
    6
  • pycharm中如何导入库_pycharm怎么加入库

    pycharm中如何导入库_pycharm怎么加入库两种方法:1.搜索添加列表中是已经存在的库,若需要添加库,点击+搜索待库安装完成,即可使用2.利用终端命令输入代码,回车,即可完成(numpy库为例,我的是已经存在了)

    2022年8月25日
    3

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号