一元三次方程求根公式及韦达定理推导_韦达定理公式初中应用

一元三次方程求根公式及韦达定理推导_韦达定理公式初中应用转自百度百科公式法(卡尔丹公式)(如右图所示)若用A、B换元后,公式可简记为:x1=A^(1/3)+B^(1/3);x2=A^(1/3)ω+B^(1/3)ω^2;x3=A^(1/3)ω^2+B^(1/3)ω。一元三次方程求根公式判别法当△=(q/2)^2+(p/3)^3>0时,有一个实根和一对个共轭虚根;当△=(q/2)^2+(p/3…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

转自百度百科

公式法(卡尔丹公式)

 

(如右图所示)

若用A、B换元后,公式可简记为:
x1=A^(1/3)+B^(1/3);
x2=A^(1/3)ω+B^(1/3)ω^2;
x3=A^(1/3)ω^2+B^(1/3)ω。
 
一元三次方程求根公式判别法
 
当△=(q/2)^2+(p/3)^3>0时,有一个实根和一对个共轭
虚根
当△=(q/2)^2+(p/3)^3=0时,有三个实根,其中两个相等;
当△=(q/2)^2+(p/3)^3<0时,有三个不相等的
实根

一元三次方程求根公式推导

第一步:
ax^3+bx^2+cx+d=0(a≠0)
为了方便,约去a得到
x^3+kx^2+mx+n=0
令x=y-k/3 ,
代入方程(y-k/3)^3+k(y-k/3)^2+m(y-k/3)+n=0 ,
(y-k/3)^3中的y^2项系数是-k ,
k(y-k/3)^2中的y^2项系数是k ,
所以相加后y^2抵消 ,
得到y^3+py+q=0,
其中p=-k^2/3+m ,
q=(2(k/3)^3)-(km/3)+n。
第二步:
方程x^3+px+q=0的三个根为:
x1=[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3);
x2=w[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+w^2[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3);
x3=w^2[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+w[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3),
其中w=(-1+i√3)/2。
×推导过程:
1、方程x^3=1的解为x1=1,x2=-1/2+i√3/2=ω,x3=-1/2-i√3/2=ω^2 ;
2、方程x^3=A的解为x1=A^(1/3),x2=A^(1/3)ω,x3=A^(1/3)ω^2 ,
3、一般三次方程ax^3+bx^2+cx+d=0(a≠0),两边同时除以a,可变成x^3+sx^2+tx+u=0的形式。
再令x=y-s/3,代入可消去次高项,变成x^3+px+q=0的形式。
设x=u+v是方程x^3+px+q=0的解,代入整理得:
(u+v)(3uv+p)+u^3+v^3+q=0 ①,
如果u和v满足uv=-p/3,u^3+v^3=-q则①成立,
由一元二次方程
韦达定理u^3和V^3是方程y^2+qy-(p/3)^3=0的两个根。
解之得,y=-q/2±((q/2)^2+(p/3)^3)^(1/2),
不妨设A=-q/2-((q/2)^2+(p/3)^3)^(1/2),B=-q/2+((q/2)^2+(p/3)^3)^(1/2),
则u^3=A;v^3=B ,
u= A^(1/3)或者A^(1/3)ω或者A^(1/3)ω^2 ;
v= B^(1/3)或者B^(1/3)ω或者B^(1/3)ω^2 ,
但是考虑到uv=-p/3,所以u、v只有三组解:
u1= A^(1/3),v1= B^(1/3);
u2=A^(1/3)ω,v2=B^(1/3)ω^2;
u3=A^(1/3)ω^2,v3=B^(1/3)ω,
最后:
方程x^3+px+q=0的三个根也出来了,即
x1=u1+v1=A^(1/3)+B^(1/3);
x2=A^(1/3)ω+B^(1/3)ω^2;
x3=A^(1/3)ω^2+B^(1/3)ω。
 
关于三次方程的韦达定理
 
设原方程为ax^3+b^2+cx+d=0;
由代数基本定理加上数学归纳法可推出其能分解成a(x-x1)(x-x2)(x-x3)的形式(x1,x2,x3∈复数域)
所以可以推出
x1x2x3=-(d/a)
x1x2+x2x3+x1x3=c/a
x1+x2+x3=-b/a
这就是三次方程时的韦达定理
 
 

转载于:https://www.cnblogs.com/dancer16/p/6852717.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/198365.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • tomcat运行solr

    tomcat运行solr

    2021年6月16日
    80
  • idea 删除一行快捷键_excel删除一行快捷键

    idea 删除一行快捷键_excel删除一行快捷键以前习惯用eclipse,但是现在用了IDEA很不习惯,也不知道IDEA的快捷开发键。1)eclipse中删除一行是Ctrl+D,很方便,也很实用。2)IDEA中删除一行则是Ctrl+Y,如下图,这是什么设计,还好我手指长能够得到Y…3)当然了可以在IDEA中设置称eclipse快捷键,先用Ctrl+Alt+S打开IDEA的设置,在上面的地址栏中搜索keymap,如下图,在keymap设置中选择eclipse然后点击右下加apply,最后点击OK。…

    2022年9月7日
    1
  • ethtool 命令详解[通俗易懂]

    ethtool 命令详解[通俗易懂]命令描述:ethtool是用于查询及设置网卡参数的命令。使用概要:ethtoolethx      //查询ethx网口基本设置,其中x是对应网卡的编号,如eth0、eth1等等ethtool–h       //显示ethtool的命令帮助(help)ethtool–iethX   //查询ethX网口的相关信息 ethtool–dethX   //查询…

    2022年10月23日
    0
  • 粒子群算法改进思路「建议收藏」

    粒子群算法改进思路「建议收藏」粒子群算法的发展过程。粒子群优化算法(ParticalSwarmOptimizationPSO),粒子群中的每一个粒子都代表一个问题的可能解,通过粒子个体的简单行为,群体内的信息交互实现问题求解的智能性.由于PSO操作简单、收敛速度快,因此在函数优化、图像处理、大地测量等众多领域都得到了广泛的应用.随着应用范围的扩大,PSO算法存在早熟收敛、维数灾难、易于陷入局部极值等问题需要解决,主要…

    2022年5月16日
    42
  • sqlyog下载安装_sqlyog激活成功教程版

    sqlyog下载安装_sqlyog激活成功教程版地址:https://github.com/webyog/sqlyog-community/wiki/Downloads

    2022年9月23日
    0
  • vue-router路由懒加载以及三种实现方式「建议收藏」

    vue-router路由懒加载以及三种实现方式「建议收藏」什么是路由懒加载?也叫延迟加载,即在需要的时候进行加载,随用随载。官方解释: 1:当打包构建应用时,JavaScript包会变得非常大,影响页面加载。 2:如果我们能把不同路由对应的组件分割成不同的代码块,然后当路由被访问的时候才加载对应组件,这样就更加高效了。官方在说什么呢?为什么需要懒加载? 1:首先,我们知道路由中通常会定义很多不同的页面。 2:这个页面这项目build打包后,一般情况下,会放在一个单独的js文件中 3:但是,如果很多的页面都放在同一个js文件.

    2022年10月6日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号