LeetCode报错:AddressSanitizer:DEADLYSIGNAL详细分析与解决

LeetCode报错:AddressSanitizer:DEADLYSIGNAL详细分析与解决LeetCode报错:AddressSanitizer:DEADLYSIGNAL详细分析与解决问题描述问题分析实例分析更多总结见:C刷题:LeetCode刷题踩坑常见BUG总结问题描述报错:AddressSanitizer:DEADLYSIGNAL,详细如下===42====ERROR:AddressSanitizer:SEGVonunknownaddressxx.ThesignaliscausedbyaREADmemoryaccess.问题分析一般可能主要有

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

LeetCode报错:AddressSanitizer:DEADLYSIGNAL详细分析与解决

作者:来知晓
公众号:来知晓
刷题交流QQ群:444172041

更多总结见:C刷题:LeetCode刷题踩坑常见BUG总结

问题描述


报错:AddressSanitizer:DEADLYSIGNAL,详细如下

===42====ERROR:AddressSanitizer: SEGV on unknown address xx. 
The signal is caused by a READ memory access.

Jetbrains全家桶1年46,售后保障稳定

问题分析


一般主要有如下几点问题

  • (高频)越界,数组引用超越了左右边界
  • 无限递归,代码无法正常结束返回
  • (高频)函数入参及出参返回处理错误

特别注意点:

对函数参数的处理问题中,LeetCode题目中涉及二维数组的输出时,若入参有 int* returnSizeint** returnColumnSizes,需要正确理解函数参数并返回相应值,否则会报错AddressSanitizer。

两个参数用法,总结说明如下:

  • int* returnSize,用 *returnSize = row,存储返回二维数组的行数

  • int** returnColumnSizes,用 *returnColumnSizes = (int*)malloc(row * sizeof(int)),动态申请row个数值的一维数组,用returnColumnSizes[0][i]给共row行数据赋值对应的列数

下面根据以上思路对实例代码进行具体分析,解决bug。

实例分析


问题来自LeetCode题目46全排列问题,详见解题分析博客。贴上第一版报以上错误的问题代码:

报错源码

第一层主调代码:

/** * Return an array of arrays of size *returnSize. * The sizes of the arrays are returned as *returnColumnSizes array. * Note: Both returned array and *columnSizes array must be malloced, assume caller calls free(). */
int g_trackNum; // 用于递归调用时临时入栈用
int g_rowPos;

// 子函数声明
int isContanin(int *nums, int len, int val)void backtrack(int *nums, int numsSize, int **returnColumnSizes, int *track);

// 主调函数
int** permute(int* nums, int numsSize, int* returnSize, int** returnColumnSizes)
{ 
   
    // 计算所有可能的总数
    int row = 1, i;
    for (i = numsSize; i > 0; i--) { 
   
        row *= i;
    }
    *returnSize = row;

    printf("row = %d\n", row);

    // 申请对应大小的二维数组并分配空间
    returnColumnSizes = (int **)malloc((row + 10) * sizeof(int*));
    if (returnColumnSizes == NULL) { 
   
        return NULL;
    }
    int *p;
    for (i = 0; i < row; i++) { 
   
        p = (int*)malloc((numsSize + 10) * sizeof(int));
        if (p == NULL) { 
   
            return NULL;
        }
        returnColumnSizes[i] = p;
    }
    p = (int*)malloc(numsSize * sizeof(int));
    if (p == NULL) { 
   
        return NULL;
    }
    int *track = p;

    // 回溯穷举所有可能排列
    g_trackNum = 0;
    g_rowPos = 0;
    backtrack(nums, numsSize, returnColumnSizes, track); // 从0行开始放结果

    // 返回returnSize和二维指针
    return returnColumnSizes;
}

回溯实现递归代码:

void backtrack(int *nums, int numsSize, int **returnColumnSizes, int *track)
{ 
   
    // 到达叶节点track加入returnColumSizes,记录的路径已经等于数组长度停止
    int i;
    if (g_trackNum == numsSize) { 
   
        // printf("back: g_rowPos = %d\n", g_rowPos);
        for (i = 0; i < numsSize; i++) { 
   
            // printf("back: g_rowPos = %d\n", g_rowPos);
            returnColumnSizes[g_rowPos][i] = track[i];
        }
        g_rowPos++;
        return;
    }

    // 递归遍历
    for (i = 0; i < numsSize; i++) { 
   
        // 确认当前值是否在track里
        if (isContanin(track, g_trackNum, nums[i])) { 
   
            continue;
        }

        // 不在的话,加入track
        // printf("back: g_trackNum = %d\n", g_trackNum);
        track[g_trackNum++] = nums[i];
        
        // 继续向后遍历
        backtrack(nums, numsSize, returnColumnSizes, track);
        // 节点返回后,取出track中的值
        g_trackNum--;
    }

    return;
}

子功能函数,判断当前值是否已被遍历:

int isContanin(int *nums, int len, int val)
{ 
   
    int flag = 0;
    int i;
    for (i = 0; i < len; i++) { 
   
        if (nums[i] == val) { 
   
            flag = 1;
            break;
        }
    }
    return flag;
}

源码分析

排查可能问题一:越界,数组引用超越了左右边界

主要有两个思路:
1、先分配足够大的空间试试,看看是不是空间问题
2、在可能越界的地方提前打印下标值,看是否溢出。因为地址消毒是在运行时中断,可以用printf打印中止前的情况。

方法1

  • 在每处可能越界引用处,提前打印下标,记录程序崩溃前打印的下标系数
  • 打印代码示例如下:
  • printf("row = %d\n", row);
  • printf("back: g_rowPos = %d\n", g_rowPos);
  • printf("back: g_trackNum = %d\n", g_trackNum);

方法2

  • 在数组分配空间初始化时,强行分配足够大的空间,确保空间足够
  • 如果加大空间后,没有报错,则说明肯定是数组引用越界问题

运行代码后,发现下标打印是正常的,没有发现问题,于是继续排查可能问题二。

排查可能问题二:无限递归,代码无法正常结束返回

  • 直接在递归函数backtrack的终止条件里打印输出记录
  • 观察是否按预期的递归方式进行递归
  • 如果没有任何打印记录,则说明函数没有终止,一直在无限递归

运行代码后,发现无该问题。

排查可能问题三:函数入参及出参返回处理错误
仔细阅读代码首行输入输出说明以及对比网上C代码实现后,发现输出参数理解有误

  • 变量二级指针returnColumnSizes保存的是每行输出的列数,虽然题目中的是固定列数,但需要赋值成相应的列数。而我最开始理解成了这个是二维数组的返回指针。
  • 二维数组的返回指针是通过函数返回参数来传递的,直接return分配的二维数组首地址即可。

将以上问题修改后,代码输出正常,无报错。

解决后的Ok代码

// 判断元素是否已被遍历
int isContain(int *nums, int len, int val)
{ 
   
    int flag = 0;
    int i;
    for (i = 0; i < len; i++) { 
   
        if (nums[i] == val) { 
   
            flag = 1;
            break;
        }
    }
    return flag;
}

// 注意该全局变量最好是只声明定义,初始化放在backtrack前
// 以免LeetCode判题机没有重新初始化导致误判
int g_trackNum; // 用于递归调用时临时入栈用
int g_rowPos; // 记录每行

void backtrack(int *nums, int numsSize, int **returnColumnSizes, int *track)
{ 
   
    // 到达叶节点track加入returnColumSizes,记录的路径已经等于数组长度停止
    int i;
    if (g_trackNum == numsSize) { 
   
        for (i = 0; i < numsSize; i++) { 
   
            returnColumnSizes[g_rowPos][i] = track[i];
        }
        g_rowPos++;
        return;
    }

    // 递归遍历
    for (i = 0; i < numsSize; i++) { 
   
        // 确认当前值是否在track里
        if (isContain(track, g_trackNum, nums[i])) { 
   
            continue;
        }

        // 不在的话,加入track
        track[g_trackNum++] = nums[i];
        // 继续向后遍历
        backtrack(nums, numsSize, returnColumnSizes, track);
        // 节点返回后,取出track中的值
        g_trackNum--;
    }

    return;
}

int** permute(int* nums, int numsSize, int* returnSize, int** returnColumnSizes)
{ 
   
    // 计算所有可能的总数n!
    int row = 1, i;
    for (i = numsSize; i > 0; i--) { 
   
        row *= i;
    }
    *returnSize = row;

    // 计算返回数组中每行的列数
    *returnColumnSizes = (int *)malloc(sizeof(int) * (*returnSize));
    if (returnColumnSizes == NULL) { 
   
        return NULL;
    }
    for (int i = 0; i < row; i++) { 
   
        returnColumnSizes[0][i] = numsSize;
    }

    // 申请对应大小的二维数组并分配空间
    int **res = (int **)malloc((row + 10) * sizeof(int*));
    if (res == NULL) { 
   
        return NULL;
    }
    int *p;
    for (i = 0; i < row; i++) { 
   
        p = (int*)malloc((numsSize + 10) * sizeof(int));
        if (p == NULL) { 
   
            return NULL;
        }
        res[i] = p;
    }
    p = (int*)malloc(numsSize * sizeof(int));
    if (p == NULL) { 
   
        return NULL;
    }
    int *track = p;

    // 回溯穷举所有可能排列
    g_trackNum = 0;
    g_rowPos = 0;
    backtrack(nums, numsSize, res, track); // 从0行开始放结果

    return res;
}
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/206723.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 麦克风阵列波束形成

    麦克风阵列波束形成波束形成beamforming体现的是声源信号的空域选择性,许多传统波束形成方法具有线性处理结构;波束形成需要考虑三个方面:1.麦克风阵列个数;2.性能;3.鲁棒性在麦克风较少时,波束形成的空域选择性差,当麦克风数量较多时,其波束3dB带宽较为窄,如果估计的目标声源方向有稍有偏差,带来的影响也更大,鲁棒性不好。通常鲁棒性和性能是对矛盾体,需要均衡来看。通常波束方向图需要随环境的语音/

    2022年6月15日
    58
  • Unity中的Shuriken粒子系统(5)

    Unity中的Shuriken粒子系统(5)设置速度在生命周期内改变(曲线的设置)1.VelocityoverLifetime通过ParticleSystem中的StartSpeed,只能设置粒子发射的起始速度,不能改变粒子发射过程中的速度;而VelocityoverLifetime能够改变粒子在运动过程中的速度。当把StartSpeed设为0(粒子初始速度为0),VelocityoverLifetime只设置X的值…

    2025年7月4日
    2
  • 大数据建模与分析挖掘相关了解「建议收藏」

    大数据建模与分析挖掘相关了解「建议收藏」一.大数据总体架构与规划二.各类数据的采集三.相关名词的了解MP:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念”Map(映射)“和”Reduce(归约)”,是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。当前的软件实现是指定一个Ma…

    2022年6月7日
    28
  • 学习算法 – 优先级队列二叉堆实现

    学习算法 – 优先级队列二叉堆实现

    2022年1月12日
    41
  • 利用DNSPod实现动态域名解析DDNS (解析内网、外网或IPV6地址)

    利用DNSPod实现动态域名解析DDNS (解析内网、外网或IPV6地址)更新记录2020-01-03-修复了12月31日由于dnspodAPI改动导致的失效。2019-05-24-支持IPV6(如你所料,之前所说的支持是假的)-根据网站的更新,api调用使用TLSv1.2,解决了之前调用失败的问题(感谢@lth410指出)。——————————-以下正文—————–…

    2022年4月30日
    60
  • ArrayList扩容原理

    ArrayList扩容原理ArrayList扩容原理今天带来的下饭菜是ArrayList的扩容源码解读。相信大家对这盘菜都不陌生,我们经常使用它来定义一个集合,无论日常开发还是自己学习使用的频率是相当的高。而且大家也都一定知道ArrayList集合是通过数组实现的,但是在声明一组数据的时候都会选择ArrayList而不是数组,原因就是由于这组数据的元素的数量不确定,如果使用数组的话,我们还得亲自维护数组的长度,这时你一定会说TMD烦死了;但如果使用了ArrayList,维护数组长度的事情就不用我们操心了,我们只需要对这组数据进

    2022年6月3日
    31

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号