用导数的定义求指数函数的导数_对数函数导数的推导

用导数的定义求指数函数的导数_对数函数导数的推导指数函数的性质  先来复习一下中学的课程:指数函数的导数  对f(x)=ax求导:  ax右侧的那个极限似乎没有办法继续简化了,如果这个极限看作关于a的函数(之所以将极限看作关于a的函数,是因为在这个极限中,a是未知的,Δx是已知的):  函数在某一点导数的几何意义是该点处切线的斜率,所以M(a)也就是ax在x=0处切线的斜率。  如果y=2x,…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

 

 指数函数的性质

  先来复习一下中学的课程:

用导数的定义求指数函数的导数_对数函数导数的推导

用导数的定义求指数函数的导数_对数函数导数的推导

指数函数的导数

  对f(x) = ax求导:

用导数的定义求指数函数的导数_对数函数导数的推导

  ax右侧的那个极限似乎没有办法继续简化了,如果这个极限看作关于a的函数(之所以将极限看作关于a的函数,是因为在这个极限中,a是未知的,Δx是已知的):

用导数的定义求指数函数的导数_对数函数导数的推导

  函数在某一点导数的几何意义是该点处切线的斜率,所以M(a)也就是ax在x=0处切线的斜率。

  如果y=2x,则用导数的定义求指数函数的导数_对数函数导数的推导,我们仍不知道M(a)是什么,暂且作为悬念。

用导数的定义求指数函数的导数_对数函数导数的推导

e

  我们知道e表示自然对数的底数,暂且不管自然对数到底是什么,只知道它确实存在。e有两个性质:

  1) (ex)’ = ex

  2) ex在x=0的导数是1

用导数的定义求指数函数的导数_对数函数导数的推导

  当我们想要继续对f(kx)=2kx,k∈R求导时,根据上节的公式(2),用导数的定义求指数函数的导数_对数函数导数的推导,这并没有解决问题,看起来更复杂了。如果已知函数某一点的导数,就能求得该函数压缩或伸展后在该点的导数,2kx仅仅是2x的压缩或伸展,在x=0处的斜率也不断向左或向右倾斜:

用导数的定义求指数函数的导数_对数函数导数的推导

用导数的定义求指数函数的导数_对数函数导数的推导

  当k=1/M(2)时,(bx)在x=0处的导数是1,b = e,虽然暂时不知道它的值,但已经知道它确实存在。

对数的性质

用导数的定义求指数函数的导数_对数函数导数的推导

用导数的定义求指数函数的导数_对数函数导数的推导

自然对数的导数

  自然对数是以e为底的对数,简写做ln

  用导数的定义求指数函数的导数_对数函数导数的推导

  y=lne和y=ex互为反函数:

用导数的定义求指数函数的导数_对数函数导数的推导

lnx求导

  对于函数y = lnx,其反函数是ey = x,根据反函数微分法:

用导数的定义求指数函数的导数_对数函数导数的推导

M(a)的真相

  已经做了足够多的准备工作,是时候揭开M(a)的真相了。

  在对指数函数y=ax求导时,我们得出(ax)’=axM(a)。根据对数的性质,elna = a,原函数需要使用对数进行一次变换:

用导数的定义求指数函数的导数_对数函数导数的推导

  根据链式求导法则,

用导数的定义求指数函数的导数_对数函数导数的推导

  所以,M(a) = ln(a)

指数函数的求导公式

  由于已经知道了M(a),所以我们终于可以完成对指数函数的求导了。

  对数函数求导公式:(ax)’ = axlna

   示例:

  (10x)’ = 10xln10, (2x)’ = 2x ln2

对数微分法

  自然对数求导公式:(lnu)’ = u’/u,u是x的函数

  根据该公式,(lnx)’ = x’/x = 1/x

 

  示例1:(lnx)’ = x’/x = 1/x

  示例2:(lnax)’ = (ax)’/ ax = (ax lna) / ax = lna

  示例3:(xx)’

    这个稍微复杂点,不能直接用指数函数求导法则,因为指数也是x,此时需要使用对数做一次转换。

用导数的定义求指数函数的导数_对数函数导数的推导

  示例4:(xn)’

  根据幂函数求导公式,(xn)’ = nxn-1,现在使用对数转换对其求解:

用导数的定义求指数函数的导数_对数函数导数的推导

  也可以使用对数微分法求解:

用导数的定义求指数函数的导数_对数函数导数的推导

  示例5:(lnsecx)’

  (lnsecx)’ = (secx)’/secx = secxtanx/secx = tanx

 e的真相

  先来看一个极限:

用导数的定义求指数函数的导数_对数函数导数的推导

  这下麻烦了,似乎没有办法直接求解。然而数学的魅力就在于化繁为简,化不可能为可能。暂且抛开lim,并使用对数转换(1+1/x)x :

用导数的定义求指数函数的导数_对数函数导数的推导

  由此得出结论:

用导数的定义求指数函数的导数_对数函数导数的推导

总结

  1. (e^x)’ = e^x,e^x在e^x=0处的导数是1
  2. 指数函数的导数 (ax)’=axlna
  3. (lnx)’ = 1/x
  4. 对数微分法,(lnu)’ = u’/u 
  5.  用导数的定义求指数函数的导数_对数函数导数的推导


  作者:我是8位的

  出处:http://www.cnblogs.com/bigmonkey

  本文以学习、研究和分享为主,如需转载,请联系本人,标明作者和出处,非商业用途! 

 

  1.  
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/206733.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 【Minecraft Modding】创建第一个Item

    【Minecraft Modding】创建第一个Item【MinecraftModding】创建第一个Item1.编辑mods.toml文件2.建立目录和包3.编辑Test.java3.注册物品4.定义物品的属性5.runClient在环境创建完成的基础上,就可以开始创建模组了!本文将叙述如何创建一个Item,即Minecraft中的掉落物。1.编辑mods.toml文件首先需要在IntelliJIDEA中载入项目,找到src\main\resources\META-INF\mods.toml文件。该文件包含了这个Mo

    2022年7月8日
    23
  • cacti网络监控工具完全指南

    cacti网络监控工具完全指南

    2021年8月14日
    78
  • vue文件上传功能_vue如何自定义组件

    vue文件上传功能_vue如何自定义组件vue的文件上传组件upload,拥有支持多种格式文件上传,单文件多文件等都支持,许多项目现在都少不了文件上传功能,但是vue的upload组件如果直接引用,肯定也有一些不方便之处,有的时候需要传参数,需要手动触发上传方法,而不是选择了文件就上传,所以结合我项目实例,写一vue自定义文件上传的实现,包括前端和后台的处理以及参数的接收。一、先认识一下vue的upload组件,官网链接ht…

    2022年8月15日
    3
  • 如何成为一名黑客(新手入门到大师全集)

    如何成为一名黑客(新手入门到大师全集)学前感言:1.这是一条坚持的道路,三分钟的热情可以放弃往下看了.2.多练多想,不要离开了教程什么都不会了.最好看完教程自己独立完成技术方面的开发.3.有时多google,baidu,我们往往都遇不到好心的大神,谁会无聊天天给你做解答.4.遇到实在搞不懂的,可以先放放,以后再来解决.基本方向:1.web安全方面(指网站服务器安全方面,进行渗透测试,检测漏洞以及安全…

    2022年5月26日
    37
  • JS正则表达式验证是否为11位有效手机号码,

    JS正则表达式验证是否为11位有效手机号码,

    2021年10月19日
    116
  • 时钟周期,机器周期,指令周期的区别是什么_紫外分光吸光度大于1

    时钟周期,机器周期,指令周期的区别是什么_紫外分光吸光度大于1时钟周期     时钟周期也称为振荡周期,定义为时钟脉冲的倒数(时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时钟周期就是1/12us),是计算机中的最基本的、最小的时间单位。    在一个时钟周期内,CPU仅完成一个最基本的动作。时钟脉冲是计算机的基本工作脉冲,控制着计算机的工作节奏。时钟频率越高,工作速度就越快。     8051单片机把一个时钟

    2022年10月13日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号