Rectified Linear Unit (ReLU)

Rectified Linear Unit (ReLU)TheRectifiedLinearUnit(ReLU)computesthefunctionf(x)=max(0,x)f(x)=max(0,x),whichissimplythresholdedatzero.ThereareseveralprosandconstousingtheReLUs:(Pros)Comparedtosigmoid/tan

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

ReLUThe Rectified Linear Unit (ReLU) computes the function f(x)=max(0,x) , which is simply thresholded at zero.

There are several pros and cons to using the ReLUs:

  1. (Pros) Compared to sigmoid/tanh neurons that involve expensive operations (exponentials, etc.), the ReLU can be implemented by simply thresholding a matrix of activations at zero. Meanwhile, ReLUs does not suffer from saturating.
  2. (Pros) It was found to greatly accelerate the convergence of stochastic gradient descent compared to the sigmoid/tanh functions. It is argued that this is due to its linear, non-saturating form.
  3. (Cons) Unfortunately, ReLU units can be fragile during training and can “die”. For example, a large gradient flowing through a ReLU neuron could cause the weights to update in such a way that the neuron will never activate on any datapoint again. If this happens, then the gradient flowing through the unit will forever be zero from that point on. That is, the ReLU units can irreversibly die during training since they can get knocked off the data manifold. For example, you may find that as much as 40% of your network can be “dead” (i.e., neurons that never activate across the entire training dataset) if the learning rate is set too high. With a proper setting of the learning rate this is less frequently an issue.

Leaky ReLU

Leaky ReLU Leaky ReLUs are one attempt to fix the “dying ReLU” problem. Instead of the function being zero when x<0 , a leaky ReLU will instead have a small negative slope(of 0.01, or so). That is, the function computes f(x)=ax if x<0 and f(x)=x if x0 , where a is a small constant. Some people report success with this form of activation function, but the results are not always consistent.

Parametric ReLU

rectified unit family
The first variant is called parametric rectified linear unit (PReLU). In PReLU, the slopes of negative part are learned from data rather than pre-defined.

Randomized ReLU

In RReLU, the slopes of negative parts are randomized in a given range in the training, and then fixed in the testing. As mentioned in [B. Xu, N. Wang, T. Chen, and M. Li. Empirical Evaluation of Rectified Activations in Convolution Network. In ICML Deep Learning Workshop, 2015.], in a recent Kaggle National Data Science Bowl (NDSB) competition, it is reported that RReLU could reduce overfitting due to its randomized nature. Moreover, suggested by the NDSB competition winner, the random

ai
in training is sampled from 1/U(3,8) and in test time it is fixed as its expectation, i.e., 2/(l+u)=2/11 .

In conclusion, three types of ReLU variants all consistently outperform the original ReLU in these three data sets. And PReLU and RReLU seem better choices.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/210108.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • uniapp 小程序上传图片

    uniapp 小程序上传图片本文使用了u-view框架<u-upload :fileList=”fileList1″ accept=’image’ width=’60’ height=”60″ :capture=’capture’ @afterRead=”afterRead” @delete=”deletePic” name=”1″ multiple :maxCount=”10″></u-upload>data(){ return{ capture:[‘album’,’c

    2022年6月17日
    42
  • kafuka常用命令[通俗易懂]

    kafuka常用命令[通俗易懂]1.查看所有topic  kafka-topics.sh–zookeeperhad1:2181–list2.查看kafka特定topic的详情,使用–topic与–describe参数  kafka-topics.sh–zookeeperhad1:2181–topiclx_test_topic–describe3.查看consumergroup列表…

    2022年5月3日
    52
  • burp suite的安装与基本使用

    burp suite的安装与基本使用1.burpsuite的下载可以在官网上下载,https://portswigger.net/burp/,除了这个社区版还有专业版,不过需要付费但是会给你一个月的试用期。安装burp会用到jdk,所以必须先配置好jdk,下载安装自行百度。2.对于初学者如果想用专业版可以在网上找激活成功教程版本,或者购买正版,社区版和专业版之间的主要区别如下:1)BurpScanner…

    2022年7月12日
    24
  • haproxy

    haproxy

    2021年5月28日
    114
  • python算法(1)抓交通肇事犯「建议收藏」

    python算法(1)抓交通肇事犯「建议收藏」抓交通肇事犯1.问题描述一辆卡车违反交通规则,撞人后逃跑。现场有三人目击该事件,但都没有记住车号,只记下了车号的一些特征。甲说:牌照的前两位数字是相同的:乙说:牌照的后两位数字是相同的,但与前两位

    2022年7月31日
    3
  • 初步了解印度数学速算法

    初步了解印度数学速算法印度也是IT发达的国家;初步了解,印度的数学自己有一套东西,有的和我们从小学的有很大区别;它的速算法,有的计算看一眼就能给出答案;这东西练一下也许能帮助减低脑力劳动强度;大家有兴趣自己研究;先初步了解一下;下图,一看就给出答案;它的算法是,14加3得17,扩大10倍170,再加上3*4的结果12,最后结果182;对于十位上的数字相同,两位数乘两位数的算法:如:15*16(1)15+6=21(2)21*10=210(3)5*6=30(4)210+30=240…

    2022年5月23日
    44

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号