Rectified Linear Unit (ReLU)

Rectified Linear Unit (ReLU)TheRectifiedLinearUnit(ReLU)computesthefunctionf(x)=max(0,x)f(x)=max(0,x),whichissimplythresholdedatzero.ThereareseveralprosandconstousingtheReLUs:(Pros)Comparedtosigmoid/tan

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

ReLUThe Rectified Linear Unit (ReLU) computes the function f(x)=max(0,x) , which is simply thresholded at zero.

There are several pros and cons to using the ReLUs:

  1. (Pros) Compared to sigmoid/tanh neurons that involve expensive operations (exponentials, etc.), the ReLU can be implemented by simply thresholding a matrix of activations at zero. Meanwhile, ReLUs does not suffer from saturating.
  2. (Pros) It was found to greatly accelerate the convergence of stochastic gradient descent compared to the sigmoid/tanh functions. It is argued that this is due to its linear, non-saturating form.
  3. (Cons) Unfortunately, ReLU units can be fragile during training and can “die”. For example, a large gradient flowing through a ReLU neuron could cause the weights to update in such a way that the neuron will never activate on any datapoint again. If this happens, then the gradient flowing through the unit will forever be zero from that point on. That is, the ReLU units can irreversibly die during training since they can get knocked off the data manifold. For example, you may find that as much as 40% of your network can be “dead” (i.e., neurons that never activate across the entire training dataset) if the learning rate is set too high. With a proper setting of the learning rate this is less frequently an issue.

Leaky ReLU

Leaky ReLU Leaky ReLUs are one attempt to fix the “dying ReLU” problem. Instead of the function being zero when x<0 , a leaky ReLU will instead have a small negative slope(of 0.01, or so). That is, the function computes f(x)=ax if x<0 and f(x)=x if x0 , where a is a small constant. Some people report success with this form of activation function, but the results are not always consistent.

Parametric ReLU

rectified unit family
The first variant is called parametric rectified linear unit (PReLU). In PReLU, the slopes of negative part are learned from data rather than pre-defined.

Randomized ReLU

In RReLU, the slopes of negative parts are randomized in a given range in the training, and then fixed in the testing. As mentioned in [B. Xu, N. Wang, T. Chen, and M. Li. Empirical Evaluation of Rectified Activations in Convolution Network. In ICML Deep Learning Workshop, 2015.], in a recent Kaggle National Data Science Bowl (NDSB) competition, it is reported that RReLU could reduce overfitting due to its randomized nature. Moreover, suggested by the NDSB competition winner, the random

ai
in training is sampled from 1/U(3,8) and in test time it is fixed as its expectation, i.e., 2/(l+u)=2/11 .

In conclusion, three types of ReLU variants all consistently outperform the original ReLU in these three data sets. And PReLU and RReLU seem better choices.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/210108.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • pycharm 条件断点_linux打断点

    pycharm 条件断点_linux打断点前言遇到一个问题,由于数据量较大,直接debug调试太费时间,看了上面链接的博文,结合自身实践,于是有了这篇博文。流程打断点,右键断点,condition填入条件(当条件为true时会进入断点,开始调试),debug运行。具体如图。注:循环内赋值的变量可能无法使用,可用赋值前的变量代替,如b=A.a;条件里写A.a<100等等。其他debug用法只记录,不进行debug…

    2025年7月22日
    2
  • Windows 7里的“隐藏”特性:Guest Mode

    Windows 7里的“隐藏”特性:Guest Mode

    2021年8月2日
    67
  • 正则表达式全解析+常用示例「建议收藏」

    正则表达式全解析+常用示例「建议收藏」在开始写这篇文章之前,我的心里还是纠结的。我在问自己要不要写这篇东西,关于相似的内容网上多如牛毛,而且还不乏珍品,况且,就算我写了也不一定能写的好。但是现在你既然看到了,那说明我还是写了出来。就算是对自己学习的一个总结吧!同时也把常见的常用的正则表达式给收集整理出来,以便用到的时候不用满世界的找。关于正则表达式一直都是个让很多程序员都觉得很郁闷的一个东西,我觉得创造正则表达式的那个家伙简直就是

    2022年5月17日
    45
  • pytest skipif_pytest不是内部或外部命令

    pytest skipif_pytest不是内部或外部命令前言pytest.mark.skip可以标记无法在某些平台上运行的测试功能,或者您希望失败的测试功能Skip和xfail:处理那些不会成功的测试用例你可以对那些在某些特定平台上不能运行的测试用

    2022年7月30日
    6
  • 代码主题darcula_仿IntelliJ Darcula的Swing主题FlatLaf使用方法

    代码主题darcula_仿IntelliJ Darcula的Swing主题FlatLaf使用方法最近Sandeepin想写个基于JavaSwing的RSS阅读器练练手,不过Swing默认主题太丑了,切成系统原生的主题也不是非常好看,正好感觉开发时用的IDEA主题很不错,不管是Light还是Darcula,都符合现代UI的设计风格。自己仿界面肯定很难仿出来,于是网上找找有没有类似风格的SwingUI库。首先找到的是Mouse0w0开源的JavaFXDarculaTheme,不过这是Java…

    2022年6月27日
    99
  • 软件工程期末试题及答案(史上最全)

    软件工程期末试题及答案(史上最全)软件工程期末试题及答案1.开发瀑布模型中的软件定义时期各个阶段依次是:(B)A)可行性研究,问题定义,需求分析。B)问题定义,可行性研究,需求分析。C)可行性研究,需求分析,问题定义。D)以上顺序都不对。(软件开发时期:概要设计、详细设计、软件实现、软件测试)2.可行性研究主要从以下几个方面进行研究:(A)A)技术可行性,经济可行性,操作可行性。B)技术可行性,经济可行性,系统可行性。C)经济可行性,系统可行性,操作可行性。D)经济可行性,系统可行性,时间可行性。..

    2022年9月2日
    5

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号