初等数论–二次剩余与二次同余方程–二次互反律「建议收藏」

初等数论–二次剩余与二次同余方程–二次互反律「建议收藏」信息安全数学基础–二次剩余与二次同余方程–雅可比符号Jacobisymbol博主是初学信息安全数学基础(整除+同余+原根+群环域),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

初等数论–二次剩余与二次同余方程–二次互反律

博主是初学初等数论(整除+同余+原根),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:初等数论,方便检索。

  • p , q p,q p,q是两个不同的奇素数,则 ( q p ) ( p q ) = ( − 1 ) ( p − 1 2 ) ⋅ ( q − 1 2 ) (\frac{q}{p})(\frac{p}{q})=(-1)^{(\frac{p-1}{2})·(\frac{q-1}{2})} (pq)(qp)=(1)(2p1)(2q1)

证明:高斯引理+巧妙发现规律
上一章证明了高斯引理 ( a p ) = ( − 1 ) m (\frac{a}{p})=(-1)^m (pa)=(1)m,同理,我们考虑 ( q p ) = ( − 1 ) m , (\frac{q}{p})=(-1)^m, (pq)=(1)m, p − 1 2 \frac{p-1}{2} 2p1个数 : q , 2 q , … … p − 1 2 q :q,2q,……\frac{p-1}{2}q :q,2q,2p1q中有 m m m个最小正因数 > p 2 , >\frac{p}{2}, >2p,我们假设这 m m m > p 2 >\frac{p}{2} >2p的最小正因数分别为: α 1 , α 2 , … … α m , < p 2 \alpha_1,\alpha_2,……\alpha_m,<\frac{p}{2} α1,α2,αm,<2p的最小正因数为: β 1 , β 2 , … … β n , \beta_1,\beta_2,……\beta_n, β1,β2,βn,上一章我们已经证过 p − α 1 , p − α 2 … … p − α m , β 1 , β 2 , … … β n , p-\alpha_1,p-\alpha_2……p-\alpha_m,\beta_1,\beta_2,……\beta_n, pα1,pα2pαm,β1,β2,βn, p − 1 2 \frac{p-1}{2} 2p1个数,大小在 1 ∼ p − 1 2 1\sim\frac{p-1}{2} 12p1之间,且两两模 p p p不同余。

  • 对于 p − 1 2 \frac{p-1}{2} 2p1个数 : q , 2 q , … … p − 1 2 q , :q,2q,……\frac{p-1}{2}q, :q,2q,2p1q,带余除法 k q = [ k q p ] ⋅ p + r k , 0 ≤ r k < p 。 kq=[\frac{kq}{p}]·p+r_k,0\le r_k<p。 kq=[pkq]p+rk,0rk<p(这里 [ ] [] []是取下整数的意思)

  • 计算 ∑ k = 1 p − 1 2 k \sum_{k=1}^{\frac{p-1}{2}}k k=12p1k(我个人觉得能想到计算这个是需要一定的数学基础的,还挺难的,我目前也不明白为什么会想到要计算这个,虽然后面可以通过这个找到m的某种表达形式,但是在这一步真的想不明白)

∑ k = 1 p − 1 2 k = ∑ i = 1 m ( p − α i ) + ∑ j = 1 n β j = ∑ i = 1 m p − ∑ i = 1 m α i + ∑ j = 1 n β j = m p − 2 ∑ i = 1 m α i + ∑ i = 1 m α i + ∑ j = 1 n β j = m p − 2 ∑ i = 1 m a i + ∑ k = 1 p − 1 2 r k \sum_{k=1}^{\frac{p-1}{2}}k\\ =\sum_{i=1}^{m}(p-\alpha_i)+\sum_{j=1}^{n}\beta_j\\=\sum_{i=1}^{m}p-\sum_{i=1}^{m}\alpha_i+\sum_{j=1}^{n}\beta_j\\=mp-2\sum_{i=1}^{m}\alpha_i+\sum_{i=1}^{m}\alpha_i+\sum_{j=1}^{n}\beta_j\\=mp-2\sum_{i=1}^{m}a_i+\sum_{k=1}^{\frac{p-1}{2}}r_k k=12p1k=i=1m(pαi)+j=1nβj=i=1mpi=1mαi+j=1nβj=mp2i=1mαi+i=1mαi+j=1nβj=mp2i=1mai+k=12p1rk (1)

  • 乘以 q q q,计算带余除法 k q = [ k q p ] ⋅ p + r k , 0 ≤ r k < p 。 kq=[\frac{kq}{p}]·p+r_k,0\le r_k<p。 kq=[pkq]p+rk,0rk<p
    ∑ k = 1 p − 1 2 k ⋅ q = ∑ k = 1 p − 1 2 [ k q p ] ⋅ p + ∑ k = 1 p − 1 2 r k \sum_{k=1}^{\frac{p-1}{2}}k·q\\=\sum_{k=1}^{\frac{p-1}{2}}[\frac{kq}{p}]·p+\sum_{k=1}^{\frac{p-1}{2}}r_k k=12p1kq=k=12p1[pkq]p+k=12p1rk (2)

  • (2)-(1)
    ∑ k = 1 p − 1 2 k ⋅ ( q − 1 ) = ( ∑ k = 1 p − 1 2 [ k q p ] − m ) ⋅ p + 2 ∑ i = 1 m a i \sum_{k=1}^{\frac{p-1}{2}}k·(q-1)=(\sum_{k=1}^{\frac{p-1}{2}}[\frac{kq}{p}]-m)·p+2\sum_{i=1}^{m}a_i k=12p1k(q1)=(k=12p1[pkq]m)p+2i=1mai

  • 同时mod 2:(这一步也挺神奇的)
    m = ∑ k = 1 p − 1 2 [ k q p ] m=\sum_{k=1}^{\frac{p-1}{2}}[\frac{kq}{p}] m=k=12p1[pkq]

同理, n = ∑ l = 1 q − 1 2 [ l p q ] n=\sum_{l=1}^{\frac{q-1}{2}}[\frac{lp}{q}] n=l=12q1[qlp]

  • 我们要计算的 ( q p ) ( p q ) = ( − 1 ) m ⋅ ( − 1 ) n = ( − 1 ) m + n , (\frac{q}{p})(\frac{p}{q})=(-1)^m·(-1)^n=(-1)^{m+n}, (pq)(qp)=(1)m(1)n=(1)m+n,即我们现在要计算的是 m + n = ∑ k = 1 p − 1 2 [ k q p ] + ∑ l = 1 q − 1 2 [ l p q ] m+n=\sum_{k=1}^{\frac{p-1}{2}}[\frac{kq}{p}]+\sum_{l=1}^{\frac{q-1}{2}}[\frac{lp}{q}] m+n=k=12p1[pkq]+l=12q1[qlp]

这一步计算我觉得也有点难,用图形化来思考这个问题:在这里插入图片描述

  • 整体计算:这个矩形里的整数点共有 ( p − 1 2 ) ⋅ ( q − 1 2 ) (\frac{p-1}{2})·(\frac{q-1}{2}) (2p1)(2q1)
  • 分开上下三角形计算:把变化中的纵坐标 y y y L L L表示:
    上三角形: x L ≤ p q , 1 ≤ L ≤ q − 1 2 , \frac{x}{L}\le\frac{p}{q},1\le L\le \frac{q-1}{2}, Lxqp,1L2q1, x ≤ L p q , x\le\frac{Lp}{q}, xqLp,点个数一共有 ∑ l = 1 q − 1 2 [ L p q ] \sum_{l=1}^{\frac{q-1}{2}}[\frac{Lp}{q}] l=12q1[qLp]
    下三角形:同理,点个数一共有 ∑ k = 1 p − 1 2 [ k q p ] \sum_{k=1}^{\frac{p-1}{2}}[\frac{kq}{p}] k=12p1[pkq]
  • ( p − 1 2 ) ⋅ ( q − 1 2 ) = ∑ k = 1 p − 1 2 [ k q p ] + ∑ l = 1 q − 1 2 [ L p q ] (\frac{p-1}{2})·(\frac{q-1}{2})=\sum_{k=1}^{\frac{p-1}{2}}[\frac{kq}{p}]+\sum_{l=1}^{\frac{q-1}{2}}[\frac{Lp}{q}] (2p1)(2q1)=k=12p1[pkq]+l=12q1[qLp]

证毕。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/215559.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号