测试算法有效性:显著性分析[通俗易懂]

测试算法有效性:显著性分析[通俗易懂]前言今天偶尔刷到一篇博客如下,里面涉及到了很多数学小知识点,基本都是很实用的数学常识,不论从事什么领域,其实都很有帮助,为此记录一下吧。https://mp.weixin.qq.com/s/RLbrf-HNc79P7jaU2Sr29Q下面分多个大标题,记录一下各个使用的点显著性分析这是非常重要了,可以参考https://blog.csdn.net/championkai/article/details/80206704基本上我们要分析两个变量或多个变量之间的差异有多大,就会用到显

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

目录

前言

显著性分析

delta method

Delta Method的结果

一些其他有趣的讨论和优化

总结


前言

今天偶尔刷到一篇博客如下,里面涉及到了很多数学小知识点,基本都是很实用的数学常识,不论从事什么领域,其实都很有帮助,为此记录一下吧。

十分钟读懂Delta Method在AB测试中的应用

下面分多个大标题,记录一下各个使用的点【下面多张图片均来源于以上博客】

显著性分析

这是非常重要了,可以参考

关于显著性检验,你想要的都在这儿了!!(基础篇)_championkai的博客-CSDN博客_显著性差异

基本上我们要分析两个变量或多个变量之间的差异有多大,就会用到显著性分析,而该场景可以说太多了,所以学好显著性分析非常有用,之间在大学和考研期间学过一些皮毛,脑海中能记得就是一堆假设检验,不过一般的话我们只需要使用这些简单的就够了

delta method

我们知道一个随机变量X的方差var(X),那么经过线性变化Y=ax+b 后,Y的方差也是知道的:a^{2}*var(X), 但如果不是线性变化呢即泛化成 f(X)?delta method就是解决这一类问题的,大概思路就是如果我们将f(X)转化成一个线性变化,而这个线性变化是逼近f(X),那不就行了,即该线性变化又能代表f(X),又能直接利用a^{2}*var(X)得到新构建随机变量Y的方差,所以问题转变为怎么求得f(X)的近似线性函数,delta method基于的是泰勒展开式,用近似的方法估计随机变量函数的方差。

复杂的变化,可以查看更多文献,但简单概括来说其解决了如下问题:

Y = f(X) \\ D(Y) = ({f(X)}')^{2}D(X)

测试算法有效性:显著性分析[通俗易懂]

这是一元的(一个随机变量),如果是多元的

测试算法有效性:显著性分析[通俗易懂]

下面我们通过一个例子来详细看看delta method的具体计算过程即博客中的一个例子推导:

测试算法有效性:显著性分析[通俗易懂]

博客中直接给出了结果,那么详细过程是什么呢?其实如下:

var(\frac{\overline{X}}{\overline{Y}})=\begin{pmatrix} \frac{\partial g(\mu_{x},\mu_{y}))}{\partial \mu_{x}}& \frac{\partial g(\mu_{x},\mu_{y}))}{\partial \mu_{y}} \end{pmatrix}\begin{pmatrix} var(\overline{X}) & COV(\overline{X},\overline{Y}))\\ COV(\overline{Y},\overline{X})) & var(\overline{Y}) \end{pmatrix}\begin{pmatrix} \frac{\partial g(\mu_{x},\mu_{y}))}{\partial \mu_{x}}& \frac{\partial g(\mu_{x},\mu_{y}))}{\partial \mu_{y}} \end{pmatrix}^{T}\\= \begin{pmatrix} \frac{1}{\mu_{y}} & -\frac{\mu_{x}}{\mu_{y}^{2}} \end{pmatrix}\begin{pmatrix} var(\overline{X}) & COV(\overline{X},\overline{Y}))\\ COV(\overline{Y},\overline{X})) & var(\overline{Y}) \end{pmatrix}\begin{pmatrix} \frac{1}{\mu_{y}} & -\frac{\mu_{x}}{\mu_{y}^{2}} \end{pmatrix}^{T}

=\begin{pmatrix} \frac{var(\overline{X})}{\mu_{y}} -\frac{\mu_{x}COV(\overline{X},\overline{Y})}{\mu_{y}^{2}}& \frac{COV(\overline{X},\overline{Y})}{\mu_{y}}-\frac{\mu_{x}var(\overline{Y})}{\mu_{y}^{2}} \end{pmatrix}\begin{pmatrix} \frac{1}{\mu_{y}} & -\frac{\mu_{x}}{\mu_{y}^{2}} \end{pmatrix}^{T}

=\frac{var(\overline{X})}{\mu _{y}^{2}}-\frac{\mu_{x}COV(\overline{X},\overline{Y})}{\mu _{y}^{3}}-\frac{\mu _{x}COV(\overline{X},\overline{Y})}{\mu _{y}^{3}}+\frac{\mu _{x}^{2}var(\overline{Y})}{\mu _{y}^{4}}

=\frac{var(\overline{X})}{\mu _{y}^{2}}+\frac{\mu _{x}^{2}var(\overline{Y})}{\mu _{y}^{4}}-\frac{2\mu_{x}COV(\overline{X},\overline{Y})}{\mu _{y}^{3}}

=\frac{var(\overline{X})}{​{\overline{Y}}^{2}}+\frac{\overline{X}^{2}var(\overline{Y})}{\overline{Y}^{4}}-2\frac{\overline{X}COV(\overline{X},\overline{Y})}{\overline{Y}^{3}}{\color{Red} (1)}

=\frac{var(\frac{X}{n})}{​{\overline{Y}}^{2}}+\frac{\overline{X}^{2}var(\frac{Y}{n})}{\overline{Y}^{4}}-2\frac{\overline{X}COV(\frac{X}{n},\frac{Y}{n})}{\overline{Y}^{3}}

=\frac{1}{n}(\frac{var(X)}{​{\overline{Y}}^{2}}+\frac{\overline{X}^{2}var(Y)}{\overline{Y}^{4}}-2\frac{\overline{X}COV(X,Y)}{\overline{Y}^{3}}) {\color{Green} (2)}

上述(1)(2)分别对应图片中的红框和绿框。其中

测试算法有效性:显著性分析[通俗易懂]

需要注意的是:

测试算法有效性:显著性分析[通俗易懂]

所以博客中开头中得到的公式是:

测试算法有效性:显著性分析[通俗易懂]

没有了协方差。

Delta Method的结果

博客中对比了传统的测试算法有效性:显著性分析[通俗易懂]和新得到的测试算法有效性:显著性分析[通俗易懂]

\frac{var(\bar{y_{t}})+var(\bar{y_{c}})}{y_{c}^{2}}\frac{var(\bar{y_{t}})+(\frac{\bar{y_{t}}}{\bar{y_{c}}})^{2}var(\bar{y_{c}})}{y_{c}^{2}},前者是下表中的错误方法,后者是Delta Method, Bootstrap是标准

测试算法有效性:显著性分析[通俗易懂]

可以看到Delta Method是和Bootstrap标准更趋近。

一些其他有趣的讨论和优化

可以看博客中的特殊情况讨论一节,挺有意思

总结

(1)显著性分析,应用很广泛,一些基本概念要知道,比如原假设H0和备择假设H1,第一类错误和第二类错误,P值

(2)delta method可用于解决非线性多元随机变量方差求解

欢迎关注笔者微信公众号

测试算法有效性:显著性分析[通俗易懂]
​​​​​​​

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/223029.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • javascript性能优化_javascript框架是什么

    javascript性能优化_javascript框架是什么即使是循环中最快的代码,累计迭代上千次也会慢下来。此外,循环体运行时也会带来小性能开销,不仅仅是增加了总体运行时间。减少迭代次数能获得更加显著的性能提升,最广为人知的一种限制循环迭代次数的模式被称为“达夫设备(Duff’sDevice)”。Duff’sDevice是一种循环体展开技术,它使得一次迭代中实际执行了多次迭代的操作。一个典型的实现如下:

    2025年12月4日
    4
  • 知识图谱构建技术综述-2.3知识推理-学习笔记「建议收藏」

    知识图谱构建技术综述-2.3知识推理-学习笔记「建议收藏」文章信息:文章末尾目录2.3节知识推理2.3.1基于规则的推理2.3.2基于分布式特征表示推理(1)基于翻译模型的知识推理(2)基于张量分解的知识推理(3)基于语义匹配模型的知识推理2.3.3基于深度学习的推理2.3节知识推理知识推理:根据已有的实体关系来推断出新的事实结论。知识推理研究分析分为3种:2.3.1基于规则的推理包含:谓词逻辑推理、本体推理和随机推理。【63】等提出一阶归纳学习就是谓词逻辑推理,可以自动提取高质量的事实并去噪

    2022年5月30日
    32
  • 分布式中几种服务注册与发现组件的原理与比较

    分布式中几种服务注册与发现组件的原理与比较分布式中几种服务注册与发现组件的原理与比较

    2022年4月20日
    46
  • spring中过滤器和拦截器_springboot拦截器顺序

    spring中过滤器和拦截器_springboot拦截器顺序拦截器与过滤器的区别:1、过滤器和拦截器触发时机不一样,过滤器是在请求进入容器后,但请求进入servlet之前进行预处理的。请求结束返回也是,是在servlet处理完后,返回给前端之前。如下图:2、拦截器可以获取IOC容器中的各个bean,而过滤器就不行,因为拦截器是spring提供并管理的,spring的功能可以被拦截器使用,在拦截器里注入一个service,可以调用业务逻辑…

    2022年8月23日
    15
  • Linux & Docker常用命令

    Linux & Docker常用命令Linux&Docker常用命令

    2025年11月20日
    5
  • Iocomp 5.12 SP6 ActiveX Crack

    Iocomp 5.12 SP6 ActiveX Crack不需要安装,免去大家下载,Q578867473安装需要注册账号的麻烦的IocompActiveX/VCL标准包是由29个控件组成的套件,Q578867473用于使用ActiveX或VCL开发环境创建专业的仪表应用程序。这些控件可用于科学,工程,医学,石油和天然气,半导体,工厂自动化,航空航天,军事,机器人技术,电信,楼宇和家庭自动化,HMI,SCADA以及数百种其他类型的应用程序。所有Iocomp控件均启用OPC。如果您的项目需要OPC连接,则可以将任何属性连接到OPC项/标签。所有连接都可

    2022年7月25日
    10

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号