GTSAM中ISAM2和IncrementalFixedLagSmoother说明[通俗易懂]

GTSAM中ISAM2和IncrementalFixedLagSmoother说明[通俗易懂]GTSAM

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

1. 参数

1.1. 配置参数ISAM2Params

struct ISAM2Params {
  typedef boost::variant<ISAM2GaussNewtonParams, ISAM2DoglegParams>
      OptimizationParams;  ///< Either ISAM2GaussNewtonParams or
                           ///< ISAM2DoglegParams
  typedef boost::variant<double, FastMap<char, Vector> >
      RelinearizationThreshold;  ///< Either a constant relinearization
                                 ///< threshold or a per-variable-type set of
                                 ///< thresholds

  /** Optimization parameters, this both selects the nonlinear optimization
   * method and specifies its parameters, either ISAM2GaussNewtonParams or
   * ISAM2DoglegParams.  In the former, Gauss-Newton optimization will be used
   * with the specified parameters, and in the latter Powell's dog-leg
   * algorithm will be used with the specified parameters.
   */
  OptimizationParams optimizationParams;

  /** Only relinearize variables whose linear delta magnitude is greater than
   * this threshold (default: 0.1).  If this is a FastMap<char,Vector> instead
   * of a double, then the threshold is specified for each dimension of each
   * variable type.  This parameter then maps from a character indicating the
   * variable type to a Vector of thresholds for each dimension of that
   * variable.  For example, if Pose keys are of type TypedSymbol<'x',Pose3>,
   * and landmark keys are of type TypedSymbol<'l',Point3>, then appropriate
   * entries would be added with:
   * \code
     FastMap<char,Vector> thresholds;
     thresholds['x'] = (Vector(6) << 0.1, 0.1, 0.1, 0.5, 0.5, 0.5).finished();
   // 0.1 rad rotation threshold, 0.5 m translation threshold thresholds['l'] =
   Vector3(1.0, 1.0, 1.0);                // 1.0 m landmark position threshold
     params.relinearizeThreshold = thresholds;
     \endcode
   */
  RelinearizationThreshold relinearizeThreshold;

  int relinearizeSkip;  ///< Only relinearize any variables every
                        ///< relinearizeSkip calls to ISAM2::update (default:
                        ///< 10)

  bool enableRelinearization;  ///< Controls whether ISAM2 will ever relinearize
                               ///< any variables (default: true)

  bool evaluateNonlinearError;  ///< Whether to evaluate the nonlinear error
                                ///< before and after the update, to return in
                                ///< ISAM2Result from update()

  enum Factorization { CHOLESKY, QR };
  /** Specifies whether to use QR or CHOESKY numerical factorization (default:
   * CHOLESKY). Cholesky is faster but potentially numerically unstable for
   * poorly-conditioned problems, which can occur when uncertainty is very low
   * in some variables (or dimensions of variables) and very high in others.  QR
   * is slower but more numerically stable in poorly-conditioned problems.  We
   * suggest using the default of Cholesky unless gtsam sometimes throws
   * IndefiniteLinearSystemException when your problem's Hessian is actually
   * positive definite.  For positive definite problems, numerical error
   * accumulation can cause the problem to become numerically negative or
   * indefinite as solving proceeds, especially when using Cholesky.
   */
  Factorization factorization;

  /** Whether to cache linear factors (default: true).
   * This can improve performance if linearization is expensive, but can hurt
   * performance if linearization is very cleap due to computation to look up
   * additional keys.
   */
  bool cacheLinearizedFactors;

  KeyFormatter
      keyFormatter;  ///< A KeyFormatter for when keys are printed during
                     ///< debugging (default: DefaultKeyFormatter)

  bool enableDetailedResults;  ///< Whether to compute and return
                               ///< ISAM2Result::detailedResults, this can
                               ///< increase running time (default: false)

  /** Check variables for relinearization in tree-order, stopping the check once
   * a variable does not need to be relinearized (default: false). This can
   * improve speed by only checking a small part of the top of the tree.
   * However, variables below the check cut-off can accumulate significant
   * deltas without triggering relinearization. This is particularly useful in
   * exploration scenarios where real-time performance is desired over
   * correctness. Use with caution.
   */
  bool enablePartialRelinearizationCheck;

  /// When you will be removing many factors, e.g. when using ISAM2 as a
  /// fixed-lag smoother, enable this option to add factors in the first
  /// available factor slots, to avoid accumulating nullptr factor slots, at the
  /// cost of having to search for slots every time a factor is added.
  bool findUnusedFactorSlots;
};

Jetbrains全家桶1年46,售后保障稳定

1.2. 更新参数ISAM2UpdateParams

struct ISAM2UpdateParams {
  ISAM2UpdateParams() = default;

  /** Indices of factors to remove from system (default: empty) */
  FactorIndices removeFactorIndices;

  /** An optional map of keys to group labels, such that a variable can be
   * constrained to a particular grouping in the BayesTree */
  boost::optional<FastMap<Key, int>> constrainedKeys{boost::none};

  /** An optional set of nonlinear keys that iSAM2 will hold at a constant
   * linearization point, regardless of the size of the linear delta */
  boost::optional<FastList<Key>> noRelinKeys{boost::none};

  /** An optional set of nonlinear keys that iSAM2 will re-eliminate, regardless
   * of the size of the linear delta. This allows the provided keys to be
   * reordered. */
  boost::optional<FastList<Key>> extraReelimKeys{boost::none};

  /** Relinearize any variables whose delta magnitude is sufficiently large
   * (Params::relinearizeThreshold), regardless of the relinearization
   * interval (Params::relinearizeSkip). */
  bool force_relinearize{false};

  /** An optional set of new Keys that are now affected by factors,
   * indexed by factor indices (as returned by ISAM2::update()).
   * Use when working with smart factors. For example:
   *  - Timestamp `i`: ISAM2::update() called with a new smart factor depending
   *    on Keys `X(0)` and `X(1)`. It returns that the factor index for the new
   *    smart factor (inside ISAM2) is `13`.
   *  - Timestamp `i+1`: The same smart factor has been augmented to now also
   *    depend on Keys `X(2)`, `X(3)`. Next call to ISAM2::update() must include
   *    its `newAffectedKeys` field with the map `13 -> {X(2), X(3)}`.
   */
  boost::optional<FastMap<FactorIndex, KeySet>> newAffectedKeys{boost::none};

  /** By default, iSAM2 uses a wildfire update scheme that stops updating when
   * the deltas become too small down in the tree. This flagg forces a full
   * solve instead. */
  bool forceFullSolve{false};
};

1.3. 返回参数ISAM2Result

/**
 * @addtogroup ISAM2
 * This struct is returned from ISAM2::update() and contains information about
 * the update that is useful for determining whether the solution is
 * converging, and about how much work was required for the update.  See member
 * variables for details and information about each entry.
 */
struct ISAM2Result {
  /** The nonlinear error of all of the factors, \a including new factors and
   * variables added during the current call to ISAM2::update().  This error is
   * calculated using the following variable values:
   * \li Pre-existing variables will be evaluated by combining their
   * linearization point before this call to update, with their partial linear
   * delta, as computed by ISAM2::calculateEstimate().
   * \li New variables will be evaluated at their initialization points passed
   * into the current call to update.
   * \par Note: This will only be computed if
   * ISAM2Params::evaluateNonlinearError is set to \c true, because there is
   * some cost to this computation.
   */
  boost::optional<double> errorBefore;

  /** The nonlinear error of all of the factors computed after the current
   * update, meaning that variables above the relinearization threshold
   * (ISAM2Params::relinearizeThreshold) have been relinearized and new
   * variables have undergone one linear update.  Variable values are
   * again computed by combining their linearization points with their
   * partial linear deltas, by ISAM2::calculateEstimate().
   * \par Note: This will only be computed if
   * ISAM2Params::evaluateNonlinearError is set to \c true, because there is
   * some cost to this computation.
   */
  boost::optional<double> errorAfter;

  /** The number of variables that were relinearized because their linear
   * deltas exceeded the reslinearization threshold
   * (ISAM2Params::relinearizeThreshold), combined with any additional
   * variables that had to be relinearized because they were involved in
   * the same factor as a variable above the relinearization threshold.
   * On steps where no relinearization is considered
   * (see ISAM2Params::relinearizeSkip), this count will be zero.
   */
  size_t variablesRelinearized;

  /** The number of variables that were reeliminated as parts of the Bayes'
   * Tree were recalculated, due to new factors.  When loop closures occur,
   * this count will be large as the new loop-closing factors will tend to
   * involve variables far away from the root, and everything up to the root
   * will be reeliminated.
   */
  size_t variablesReeliminated;

  /** The number of factors that were included in reelimination of the Bayes'
   * tree. */
  size_t factorsRecalculated;

  /** The number of cliques in the Bayes' Tree */
  size_t cliques;

  /** The indices of the newly-added factors, in 1-to-1 correspondence with the
   * factors passed as \c newFactors to ISAM2::update().  These indices may be
   * used later to refer to the factors in order to remove them.
   */
  FactorIndices newFactorsIndices;

  /** Unused keys, and indices for unused keys,
   * i.e., keys that are empty now and do not appear in the new factors.
   */
  KeySet unusedKeys;

  /** keys for variables that were observed, i.e., not unused. */
  KeyVector observedKeys;

  /** Keys of variables that had factors removed. */
  KeySet keysWithRemovedFactors;

  /** All keys that were marked during the update process. */
  KeySet markedKeys;
}

2. 函数说明

2.1. ISAM2::marginalizeLeaves

Marginalize out variables listed in leafKeys. These keys must be leaves in the BayesTree. Throws MarginalizeNonleaf Exception if non-leaves are requested to be marginalized. Marginalization leaves a linear approximation of the marginal in the system, and the linearization points of any variables involved in this linear marginal become fixed. The set fixed variables will include any key involved with the marginalized variables in the original factors, and possibly additional ones due to fill-in.

If provided, ‘marginalFactorsIndices’ will be augmented with the factor graph indices of the marginal factors added during the ‘marginalizeLeaves’ call

If provided, ‘deletedFactorsIndices’ will be augmented with the factor graph indices of any factor that was removed during the ‘marginalizeLeaves’

2.2. ISAM2::recalculateIncremental

2.3. ISAM2::recalculateBatch

2.4. recursiveMarkAffectedKeys

在IncrementalFixedLagSmoother.cpp这个文件中,但并不是成员函数。

用于标记一个key的子树

2.5. IncrementalFixedLagSmoother::update

2.6. ISAM2::update

2.7. BayesTree::removeSubtree

如果入参是根团,删除该团及其所有子孙团,在node_中也有删除

如果入参不是根节点,先把其父团与其的边删除

返回所有被删除的团

3. 成员变量说明

Values ISAM2::theta_

VectorValues ISAM2::delta_

VariableIndex ISAM2::variableIndex_

4. 辅助类

4.1. treeTraversalNode-inst.h

// Internal node used in DFS preorder stack
template<typename NODE, typename DATA>
struct TraversalNode {
  bool expanded;
  const boost::shared_ptr<NODE>& treeNode;
  DATA& parentData;
  typename FastList<DATA>::iterator dataPointer;
  TraversalNode(const boost::shared_ptr<NODE>& _treeNode, DATA& _parentData) :
      expanded(false), treeNode(_treeNode), parentData(_parentData) {
  }
};

4.2. EliminationTree.h

struct EliminationTree::Node {
  typedef FastVector<sharedFactor> Factors;
  typedef FastVector<boost::shared_ptr<Node> > Children;

  Key key; ///< key associated with root
  Factors factors; ///< factors associated with root
  Children children; ///< sub-trees

  sharedFactor eliminate(const boost::shared_ptr<BayesNetType>& output,
                         const Eliminate& function,
                         const FastVector<sharedFactor>& childrenFactors) const;

  void print(const std::string& str, const KeyFormatter& keyFormatter) const;
};

4.3. ClusterTree-inst.h

struct EliminationData {
  // Typedefs
  typedef typename CLUSTERTREE::sharedFactor sharedFactor;
  typedef typename CLUSTERTREE::FactorType FactorType;
  typedef typename CLUSTERTREE::FactorGraphType FactorGraphType;
  typedef typename CLUSTERTREE::ConditionalType ConditionalType;
  typedef typename CLUSTERTREE::BayesTreeType::Node BTNode;

  // member variables
  EliminationData* const parentData;
  size_t myIndexInParent;
  FastVector<sharedFactor> childFactors;
  boost::shared_ptr<BTNode> bayesTreeNode;
  
  // member functions
  // Elimination pre-order visitor - creates the EliminationData structure for the visited node.
  static EliminationData EliminationPreOrderVisitor(const typename CLUSTERTREE::sharedNode& node,
                                                    EliminationData& parentData) {
    assert(node);
    EliminationData myData(&parentData, node->nrChildren());
    myData.bayesTreeNode->problemSize_ = node->problemSize();
    return myData;
  }
  // ........
}

4.4. VariableIndex

The VariableIndex class computes and stores the block column structure of a factor graph.  The factor graph stores a collection of factors, each of which involves a set of variables.  In contrast, the VariableIndex is built from a factor graph prior to elimination, and stores the list of factors that involve each variable.  This information is stored as a deque of lists of factor indices.
最主要的成变量是FastMap<Key, FactorIndices> index_,用于存储key和因子的索引的对应关系
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/226881.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 独立成分分析(Independent Component Analysis,ICA)原理及代码实现

    独立成分分析(Independent Component Analysis,ICA)原理及代码实现过程监控中会用到很多中方法,如主成分分析(PCA)、慢特征分析(SFA)、概率MVA方法或独立成分分析(ICA)等为主流算法。其中PCA主要多用于降维及特征提取,且只对正太分布(高斯分布)数据样本有效;SFA被用来学习过程监控的时间相关表示,SFA不仅可以通过监测稳态分布来检测与运行条件的偏差,还可以根据时间分布来识别过程的动态异常,多用于分类分析;概率MVA方法,多以解决动力学、时变、非线性等问题。今天要介绍的是独立成分分析(ICA),由浅入深,细细道来。此外文末还附有ICA可实现的代码哟~不要错过

    2022年5月17日
    45
  • Could not download kotlin-compiler-embeddable.jar

    Could not download kotlin-compiler-embeddable.jar

    2021年10月1日
    39
  • Android4.0 input事件输入流程详解(中间层到应用层)

    Android4.0 input事件输入流程详解(中间层到应用层)在Android系统中,类似于键盘按键、触摸屏等事件是由WindowManagerService服务来管理的,然后再以消息的形式来分发给应用程序进行处理。系统启动时,窗口管理服务也会启动,该服务启动过程中,会通过系统输入管理器InputManager来负责监控键盘消息。当某一个Activity激活时,会在该Service下注册一个接收消息的通道,表明可以处理具体的消息,然后当有消息时,InputM

    2022年5月29日
    37
  • 交叉熵损失函数原理详解[通俗易懂]

    交叉熵损失函数原理详解[通俗易懂]交叉熵损失函数原理详解之前在代码中经常看见交叉熵损失函数(CrossEntropyLoss),只知道它是分类问题中经常使用的一种损失函数,对于其内部的原理总是模模糊糊,而且一般使用交叉熵作为损失函数时,在模型的输出层总会接一个softmax函数,至于为什么要怎么做也是不懂,所以专门花了一些时间打算从原理入手,搞懂它,故在此写一篇博客进行总结,以便以后翻阅。交叉熵简介交叉熵是信息论中的一个…

    2022年6月26日
    31
  • 51单片机之逻辑运算指令ANL、ORL、XRL等

    51单片机之逻辑运算指令ANL、ORL、XRL等文章目录前言一、简单操作指令CLR、CPL、SWAPCLRACPLASWAPA二、位移指令RL、RR、RLC、RRCRLARRARLCARRCA三、逻辑“与”指令ANLANLA,XXXANLdirect,XXX四、逻辑“或”指令ORLORLA,XXXORLdirect,XXX五、逻辑“异或”指令XRLORLA,XXXXRLdirect,XXX前言…

    2022年7月26日
    18
  • 【MIME笔记】

    我最近对互联网的一些技术细节很感兴趣,打算做一系列的笔记。====…

    2022年1月18日
    41

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号