cholesky分解java代码,实数矩阵Cholesky分解算法的C++实现

cholesky分解java代码,实数矩阵Cholesky分解算法的C++实现头文件 Copyright c 2008 2011ZhangMin M Zhang programisfre youcanredist ormodifyit undertheterm

头文件:

/*

* Copyright (c) 2008-2011 Zhang Ming (M. Zhang),

*

* This program is free software; you can redistribute it and/or modify it

* under the terms of the GNU General Public License as published by the

* Free Software Foundation, either version 2 or any later version.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions are met:

*

* 1. Redistributions of source code must retain the above copyright notice,

* this list of conditions and the following disclaimer.

*

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

*

* This program is distributed in the hope that it will be useful, but WITHOUT

* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for

* more details. A copy of the GNU General Public License is available at:

* http://www.fsf.org/licensing/licenses

*/

/*

* cholesky.h

*

* Class template of Cholesky decomposition.

*

* For a symmetric, positive definite matrix A, this function computes the

* Cholesky factorization, i.e. it computes a lower triangular matrix L such

* that A = L*L’. If the matrix is not symmetric or positive definite, the

* function computes only a partial decomposition. This can be tested with

* the isSpd() flag.

*

* This class also supports factorization of complex matrix by specializing

* some member functions.

*

* Adapted form Template Numerical Toolkit.

*

* Zhang Ming, 2010-01 (revised 2010-12), Xi’an Jiaotong University.

*/

#ifndef CHOLESKY_H

#define CHOLESKY_H

#include

namespace splab

{

template

class Cholesky

{

public:

Cholesky();

~Cholesky();

bool isSpd() const;

void dec( const Matrix &A );

Matrix getL() const;

Vector solve( const Vector &b );

Matrix solve( const Matrix &B );

private:

bool spd;

Matrix L;

};

//class Cholesky

#include

}

// namespace splab

#endif

// CHOLESKY_H

实现文件:

/*

* Copyright (c) 2008-2011 Zhang Ming (M. Zhang),

*

* This program is free software; you can redistribute it and/or modify it

* under the terms of the GNU General Public License as published by the

* Free Software Foundation, either version 2 or any later version.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions are met:

*

* 1. Redistributions of source code must retain the above copyright notice,

* this list of conditions and the following disclaimer.

*

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

*

* This program is distributed in the hope that it will be useful, but WITHOUT

* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for

* more details. A copy of the GNU General Public License is available at:

* http://www.fsf.org/licensing/licenses

*/

/*

* cholesky-impl.h

*

* Implementation for Cholesky class.

*

* Zhang Ming, 2010-01 (revised 2010-12), Xi’an Jiaotong University.

*/

/

* constructor and destructor

*/

template

Cholesky::Cholesky() : spd(true)

{

}

template

Cholesky::~Cholesky()

{

}

/

* return true, if original matrix is symmetric positive-definite.

*/

template

inline bool Cholesky::isSpd() const

{

return spd;

}

/

* Constructs a lower triangular matrix L, such that L*L’= A.

* If A is not symmetric positive-definite (SPD), only a partial

* factorization is performed. If isspd() evalutate true then

* the factorizaiton was successful.

*/

template

void Cholesky::dec( const Matrix &A )

{

int m = A.rows();

int n = A.cols();

spd = (m == n);

if( !spd )

return;

L = Matrix(n,n);

// main loop.

for( int j=0; j

{

Type d = 0;

for( int k=0; k

{

Type s = 0;

for( int i=0; i

s += L[k][i]*L[j][i];

L[j][k] = s = (A[j][k]-s) / L[k][k];

d = d + s*s;

spd = spd && (A[k][j] == A[j][k]);

}

d = A[j][j] – d;

spd = spd && ( d > 0 );

L[j][j] = sqrt( d > 0 ? d : 0 );

for( int k=j+1; k

L[j][k] = 0;

}

}

/

* return the lower triangular factor, L, such that L*L’=A.

*/

template

inline Matrix Cholesky::getL() const

{

return L;

}

/

* Solve a linear system A*x = b, using the previously computed

* cholesky factorization of A: L*L’.

*/

template

Vector Cholesky::solve( const Vector &b )

{

int n = L.rows();

if( b.dim() != n )

return Vector();

Vector x = b;

// solve L*y = b

for( int k=0; k

{

for( int i=0; i

x[k] -= x[i]*L[k][i];

x[k] /= L[k][k];

}

// solve L’*x = y

for( int k=n-1; k>=0; –k )

{

for( int i=k+1; i

x[k] -= x[i]*L[i][k];

x[k] /= L[k][k];

}

return x;

}

/

* Solve a linear system A*X = B, using the previously computed

* cholesky factorization of A: L*L’.

*/

template

Matrix Cholesky::solve( const Matrix &B )

{

int n = L.rows();

if( B.rows() != n )

return Matrix();

Matrix X = B;

int nx = B.cols();

// solve L*Y = B

for( int j=0; j

for( int k=0; k

{

for( int i=0; i

X[k][j] -= X[i][j]*L[k][i];

X[k][j] /= L[k][k];

}

// solve L’*X = Y

for( int j=0; j

for( int k=n-1; k>=0; –k )

{

for( int i=k+1; i

X[k][j] -= X[i][j]*L[i][k];

X[k][j] /= L[k][k];

}

return X;

}

/

* Main loop of specialized member function. This macro definition is

* aimed at avoiding code duplication.

*/

#define MAINLOOP \

{ \

int m = A.rows(); \

int n = A.cols(); \

\

spd = (m == n); \

if( !spd ) \

return; \

\

for( int j=0; j

{ \

spd = spd && (imag(A[j][j]) == 0); \

d = 0; \

\

for( int k=0; k

{ \

s = 0; \

for( int i=0; i

s += L[k][i] * conj(L[j][i]); \

\

L[j][k] = s = (A[j][k]-s) / L[k][k]; \

d = d + norm(s); \

spd = spd && (A[k][j] == conj(A[j][k])); \

} \

\

d = real(A[j][j]) – d; \

spd = spd && ( d > 0 ); \

\

L[j][j] = sqrt( d > 0 ? d : 0 ); \

for( int k=j+1; k

L[j][k] = 0; \

} \

}

/

* Solving process of specialized member function. This macro definition is

* aimed at avoiding code duplication.

*/

#define SOLVE1 \

{ \

for( int k=0; k

{ \

for( int i=0; i

x[k] -= x[i]*L[k][i]; \

\

x[k] /= L[k][k]; \

} \

\

for( int k=n-1; k>=0; –k ) \

{ \

for( int i=k+1; i

x[k] -= x[i]*conj(L[i][k]); \

\

x[k] /= L[k][k]; \

} \

\

return x; \

}

/

* Solving process of specialized member function. This macro definition is

* aimed at avoiding code duplication.

*/

#define SOLVE2 \

{ \

int nx = B.cols(); \

for( int j=0; j

for( int k=0; k

{ \

for( int i=0; i

X[k][j] -= X[i][j]*L[k][i]; \

\

X[k][j] /= L[k][k]; \

} \

\

for( int j=0; j

for( int k=n-1; k>=0; –k ) \

{ \

for( int i=k+1; i

X[k][j] -= X[i][j]*conj(L[i][k]); \

\

X[k][j] /= L[k][k]; \

} \

\

return X; \

}

/

* Specializing for “dec” member function.

*/

template <>

void Cholesky >::dec( const Matrix > &A )

{

float d;

complex s;

L = Matrix >(A.cols(),A.cols());

MAINLOOP;

}

template <>

void Cholesky >::dec( const Matrix > &A )

{

double d;

complex s;

L = Matrix >(A.cols(),A.cols());

MAINLOOP;

}

template <>

void Cholesky >::dec( const Matrix > &A )

{

long double d;

complex s;

L = Matrix >(A.cols(),A.cols());

MAINLOOP;

}

/

* Specializing for “solve” member function.

*/

template <>

Vector > Cholesky >::solve( const Vector > &b )

{

int n = L.rows();

if( b.dim() != n )

return Vector >();

Vector > x = b;

SOLVE1

}

template <>

Vector > Cholesky >::solve( const Vector > &b )

{

int n = L.rows();

if( b.dim() != n )

return Vector >();

Vector > x = b;

SOLVE1

}

template <>

Vector > Cholesky >::solve( const Vector > &b )

{

int n = L.rows();

if( b.dim() != n )

return Vector >();

Vector > x = b;

SOLVE1

}

/

* Specializing for “solve” member function.

*/

template <>

Matrix > Cholesky >::solve( const Matrix > &B )

{

int n = L.rows();

if( B.rows() != n )

return Matrix >();

Matrix > X = B;

SOLVE2

}

template <>

Matrix > Cholesky >::solve( const Matrix > &B )

{

int n = L.rows();

if( B.rows() != n )

return Matrix >();

Matrix > X = B;

SOLVE2

}

template <>

Matrix > Cholesky >::solve( const Matrix > &B )

{

int n = L.rows();

if( B.rows() != n )

return Matrix >();

Matrix > X = B;

SOLVE2

}

测试代码:

/*

* cholesky_test.cpp

*

* Cholesky class testing.

*

* Zhang Ming, 2010-01 (revised 2010-12), Xi’an Jiaotong University.

*/

#define BOUNDS_CHECK

#include

#include

#include

using namespace std;

using namespace splab;

typedef double Type;

const int N = 5;

int main()

{

Matrix A(N,N), L(N,N);

Vector b(N);

for( int i=1; i

{

for( int j=1; j

if( i == j )

A(i,i) = i;

else

if( i < j )

A(i,j) = i;

else

A(i,j) = j;

b(i) = i*(i+1)/2.0 + i*(N-i);

}

cout << setiosflags(ios::fixed) << setprecision(3);

cout << “The original matrix A : ” << A << endl;

Cholesky cho;

cho.dec(A);

if( !cho.isSpd() )

cout << “Factorization was not complete.” << endl;

else

{

L = cho.getL();

cout << “The lower triangular matrix L is : ” << L << endl;

cout << “A – L*L^T is : ” << A – L*trT(L) << endl;

Vector x = cho.solve(b);

cout << “The constant vector b : ” << b << endl;

cout << “The solution of Ax = b : ” << x << endl;

cout << “The Ax – b : ” << A*x-b << endl;

Matrix IA = cho.solve(eye(N,Type(1)));

cout << “The inverse matrix of A : ” << IA << endl;

cout << “The product of A*inv(A) : ” << A*IA << endl;

}

return 0;

}

运行结果:

The original matrix A : size: 5 by 5

1.000 1.000 1.000 1.000 1.000

1.000 2.000 2.000 2.000 2.000

1.000 2.000 3.000 3.000 3.000

1.000 2.000 3.000 4.000 4.000

1.000 2.000 3.000 4.000 5.000

The lower triangular matrix L is : size: 5 by 5

1.000 0.000 0.000 0.000 0.000

1.000 1.000 0.000 0.000 0.000

1.000 1.000 1.000 0.000 0.000

1.000 1.000 1.000 1.000 0.000

1.000 1.000 1.000 1.000 1.000

A – L*L^T is : size: 5 by 5

0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000

The constant vector b : size: 5 by 1

5.000

9.000

12.000

14.000

15.000

The solution of Ax = b : size: 5 by 1

1.000

1.000

1.000

1.000

1.000

The Ax – b : size: 5 by 1

0.000

0.000

0.000

0.000

0.000

The inverse matrix of A : size: 5 by 5

2.000 -1.000 0.000 0.000 0.000

-1.000 2.000 -1.000 0.000 0.000

0.000 -1.000 2.000 -1.000 0.000

0.000 0.000 -1.000 2.000 -1.000

0.000 0.000 0.000 -1.000 1.000

The product of A*inv(A) : size: 5 by 5

1.000 0.000 0.000 0.000 0.000

0.000 1.000 0.000 0.000 0.000

0.000 0.000 1.000 0.000 0.000

0.000 0.000 0.000 1.000 0.000

0.000 0.000 0.000 0.000 1.000

Process returned 0 (0x0) execution time : 0.109 s

Press any key to continue.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/233257.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • intellij idea 主题下载网站

    intellij idea 主题下载网站https://plugins.jetbrains.com/search?tags=Theme

    2022年5月31日
    257
  • 《Android移动应用基础教程》(Android Studio)(第二版)黑马程序员 课后习题答案

    《Android移动应用基础教程》(Android Studio)(第二版)黑马程序员 课后习题答案《Android移动应用基础教程》(AndroidStudio)(第二版)黑马程序员课后习题答案目录第1章Android基础入门第2章Android常见界面布局第3章Android常见界面控件第4章程序活动单元Activity第5章数据存储第7章使用内容提供者共享数据第8章广播机制第9章服务第10章Android事件处理第11章网络编程第1章Android基础入门一、填空题1、dex2、@color3、AndroidManifest.xml4、LogCat二、判断题

    2022年5月27日
    387
  • codelf用不了

    codelf用不了codelf用不了,变量命名神器试试这个连接:http://codeif.xinke.org.cn/还是不行?试试别的浏览器:如Ie//一开始我在谷歌浏览器也是用不了,然后打开控制台发现报错:’addEventListener’ofundefined就换成ie打开…

    2022年6月4日
    139
  • 复制粘贴网页上的文字有的字粘贴不上_网页无法复制的文字怎么复制

    复制粘贴网页上的文字有的字粘贴不上_网页无法复制的文字怎么复制当你在浏览一些网站时,是否有遇到过无法复制粘贴的情况。看到一篇好的文章,或者一段好的语句,想要复制下来,却发现无法使用复制粘贴功能,这是该网站进行了加密设置。而你又不想屏幕截图再OCR识别,那该怎么办?桌面天下的小编有办法!从浏览器的相关功能下手如果你使用的是IE浏览器的话,我们可以更改其相关设置,屏蔽掉网站的某些功能就能达到目的了。安全设置帮你忙:启动IE→点击菜单“工具”中“Internet选…

    2022年10月13日
    3
  • JAVA中Object转String

    JAVA中Object转String1.object.toString()方法这种方法要注意的是object不能为null,否则会报NullPointException,一般别用这种方法。2.String.valueOf(object)方法这种方法不必担心object为null的问题,若为null,会将其转换为”null”字符串,而不是null。这一点要特别注意。”null”和null不是一个概念。3….

    2022年6月12日
    35
  • SQL SERVER的QUOTENAME函数

    SQL SERVER的QUOTENAME函数quotename使函数中的输入成为一个有效的标识符selectQUOTENAME(‘dddd’) 返回[dddd]selectQUOTENAME(‘dddd’,'”‘)返回”dddd”首先,sqlserver里的标识符有一定的规则,比如 你 createtableabc123(…) 那么中间含有空格,它不是符合规则的。 

    2022年7月25日
    17

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号