python中的yeild

python中的yeild您可能听说过 带有 yield 的函数在 Python 中被称之为 generator 生成器 何谓 generator 我们先抛开 generator 以一个常见的编程题目来展示 yield 的概念 如何生成斐波那契數列斐波那契 Fibonacci 數列是一个非常简单的递归数列 除第一个和第二个数外 任意一个数都可由前两个数相加得到 用计算机程序输出斐波那契數列的前

生成器是这样一个函数,它记住上一次返回时在函数体中的位置。对生成器函数的第二次(或第 次)调用跳转至该函数中间,而上次调用的所有局部变量都保持不变。

生成器不仅“记住”了它数据状态;生成器还“记住”了它在流控制构造(在命令式编程中,这种构造不只是数据值)中的位置。

生成器的特点

     生成器是一个函数,而且函数的参数都会保留。

     迭代到下一次的调用时,所使用的参数都是第一次所保留下的,即是说,在整个所有函数调用的参数都是第一次所调用时保留的,而不是新创建的

Python中,yield就是这样的一个生成器。

yield 生成器的运行机制

当你问生成器要一个数时,生成器会执行,直至出现 yield 语句,生成器把 

     yield 的参数给你,之后生成器就不会往下继续运行。 当你问他要下一个数时,他会从上次的状态。开始运行,直至出现yield语句,把参数给你,之后停下。如此反复直至退出函数。(以上关于yield的描述,在后面列举一个简单的例子来解释这段话)

yield的使用

python中,当你定义一个函数,使用了yield关键字时,这个函数就是一个生成器,它的执行会和其他普通的函数有很多不同,函数返回的是一个对象,而不是你平常所用return语句那样,能得到结果值。如果想取得值,那得调用next()函数,如:

[python]  view plain   copy

  print ?

  1. c = h() #h()包含了yield关键字  
  2. #返回值  
  3. c.next()  

每当调用一次迭代器的next函数,生成器函数运行到yield之处,返回yield后面的值且在这个地方暂停,所有的状态都会被保持住,直到下次next函数被调用,或者碰到异常循环退出。

下面,来看看以下的例子代码吧,是用来说明yield运行机制的。

[python]  view plain   copy

  print ?

  1. def fib(max):  
  2.     a, b = 11  
  3.     while a < max:  
  4.         yield a #generators return an iterator that returns a stream of values.  
  5.         a, b = b, a+b  

程序运行:

[python]  view plain   copy

  print ?

  1. for n in fib(15):  
  2.     print n  


从前面的运行机制描述中,可以获知,程序运行到yield这行时,就不会继续往下执行。而是返回一个包含当前函数所有参数的状态的iterator对象。目的就是为了第二次被调用时,能够访问到函数所有的参数值都是第一次访问时的值,而不是重新赋值。

程序第一次调用时:

[python]  view plain   copy

  print ?

  1. def fib(max):  
  2.     a, b = 11  
  3.     while a < max:  
  4.         yield a #这时a,b值分别为1,1,当然,程序也在执行到这时,返回  
  5.         a, b = b, a+b  


程序第二次调用时:

从前面可知,第一次调用时,a,b=1,1,那么,我们第二次调用时(其实就是调用第一次返回的iterator对象的next()方法),程序跳到yield语句处,

执行a,b = b, a+b语句,此时值变为:a,b = 1, (1+1) => a,b = 1, 2

程序继续while循环,当然,再一次碰到了yield a 语句,也是像第一次那样,保存函数所有参数的状态,返回一个包含这些参数状态的iterator对象。

等待第三次的调用….

[python]  view plain   copy

  print ?

  1. def fib(max):  
  2.     a, b = 11  
  3.     while a < max:  
  4.         yield a   
  5.         a, b = b, a+b  



通过上面的分析,可以一次类推的展示了yield的详细运行过程了!

通过使用生成器的语法,可以免去写迭代器类的繁琐代码,如,上面的例子使用迭代类来实现,代码如下:

[python]  view plain   copy

  print ?

  1. class Fib:  
  2.     def __init__(self, max):  
  3.         self.max = max  
  4.     def __iter__(self):  
  5.         self.a = 0  
  6.         self.b = 1  
  7.         return self  
  8.     def next(self):  
  9.         fib = self.a  
  10.         if fib > self.max:  
  11.             raise StopIteration  
  12.         self.a, self.b = self.b, self.a + self.b  
  13.         return fib  



yield其他例子展示:排列,组合

#生成全排列    

[python]  view plain   copy

  print ?

  1. def perm(items, n = None):  
  2.     if n is None:  
  3.         n = len(items)  
  4.     for i in range(len(items)):  
  5.         v = items[i:i+1]  
  6.         if n==1:  
  7.             yield v  
  8.         else:  
  9.             rest = items[:i] + items[i+1:]  
  10.             for p in perm(rest, n-1):  
  11.                 yield v + p  
  12. def comb(items, n = None):  
  13.     if n is None:  
  14.         n = len(items)  
  15.     else:  
  16.         for i in range(len(items)):  
  17.             v = items[i:i+1]  
  18.             if 1 == n:  
  19.                 yield v  
  20.             else:  
  21.                 rest = items[i+1:]  
  22.                 for c in comb(rest, n-1):  
  23.                     yield v + c  

另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:

清单 9. 另一个 yield 的例子
 def read_file(fpath): BLOCK_SIZE = 1024 with open(fpath, 'rb') as f: while True: block = f.read(BLOCK_SIZE) if block: yield block else: return







版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/233686.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • django 自定义过滤器_自定义权限过滤器

    django 自定义过滤器_自定义权限过滤器前言虽然DTL给我们内置了许多好用的过滤器。但是有些时候还是不能满足我们的需求。因此Django给我们提供了一个接口,可以让我们自定义过滤器,实现自己的需求。自定义过滤器首先在某个app中,创建

    2022年7月30日
    6
  • wolive在线客服系统_源码屋

    wolive在线客服系统_源码屋wolive是一款为数不多的可自行搭建的php客服系统源码,基于开源高性能workerman框架开发,看了下,功能比较全。想到基于workerman开发,并发性能应该不错。找遍其它客服系统,发现都没有给源码,程序及聊天数据也全部存储在别人服务器上,由于业务涉及到一些账号、订单、买家信息等隐私,担心数据安全问题,所以找到了wolive。由于wolive可以私有化部署,数据库、程序都在自己服务器上,…

    2022年9月21日
    0
  • activiti5.22 springboot 流程引擎 实战全过程

    activiti5.22 springboot 流程引擎 实战全过程一.背景现在很多项目流程上比较复杂,业务上不复杂,对于这种项目,引入流程引擎会比较合适,流程有流程引擎去做管理,让设计更合理,开发更简单。市面上有很多款流程引擎,本人选用了使用率比较广的流程引擎activiti。activiti现在最高版本已经到7,springboot最高版本是6,由于网络上5.22版本资料最多,所以选用了5.22版本作为项目集成。二.activi…

    2022年10月20日
    3
  • Hyperledger Fabric Chaincode 开发「建议收藏」

    Hyperledger Fabric Chaincode 开发

    2022年3月13日
    46
  • 微信H5×××APP下载链接被屏蔽的解决办法[通俗易懂]

    微信H5×××APP下载链接被屏蔽的解决办法[通俗易懂]微信H5×××APP下载链接被屏蔽的解决办法

    2022年4月22日
    64
  • es6数组和对象常用方法

    es6数组和对象常用方法数组forEach()方法对数组的每个元素执行一次给定的函数。vararr=[1,2,3]arr.forEach((value,index)=>{console.log(‘数组值:’+value);console.log(‘数组索引:’+index);})map()方法创建一个新数组,其结果是该数组中的每个元素都调用一次提供的函数后的返回值。vararr=[1,2,3]vararr1=arr.map((value,in

    2022年5月26日
    46

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号