几何角度理解叉乘

几何角度理解叉乘简介 本文解释了叉乘的计算 行列式 和几何解释之间的关系 1 叉乘的计算及几何解释在我学习叉乘 本文只考虑三维向量 的时候 老师教了我们两个东西 叉乘的计算方法 用行列式 设有向量 v v1 v2 v3 w w1 w2 w3 vec v v 1 v 2 v 3 quad vec w w 1 w 2 w 3 quadv v1 v2 v3

简介:本文解释了叉乘(本文只考虑三维向量)的计算(行列式)和几何解释之间的关系

1.叉乘的计算及几何解释

在我学习叉乘的时候,老师教了我们两个东西:

  • 叉乘的计算方法:用行列式。
    设有向量 v ⃗ = ( v 1 , v 2 , v 3 ) , w ⃗ = ( w 1 , w 2 , w 3 ) , \vec{v}=(v_1, v_2, v_3), \quad \vec{w} = (w_1, w_2, w_3),\quad v
    =
    (v1,v2,v3),w
    =
    (w1,w2,w3),

(1) v ⃗ × w ⃗ = d e t ( [ i j k v 1 v 2 v 3 w 1 w 2 w 3 ] ) = ( v 2 ⋅ w 3 − v 3 ⋅ w 2 ) i ⃗ + ( v 3 ⋅ w 1 − v 1 ⋅ w 3 ) j ⃗ + ( v 1 ⋅ w 2 − v 2 ⋅ w 1 ) k ⃗ = [ v 2 ⋅ w 3 − v 3 ⋅ w 2 v 3 ⋅ w 1 − v 1 ⋅ w 3 v 1 ⋅ w 2 − v 2 ⋅ w 1 ] \vec{v}\times \vec{w}= det( \left[ \begin{matrix} i & j & k \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{matrix} \right] ) = (v_2\cdot w_3-v_3\cdot w_2)\vec{i} + (v_3\cdot w_1-v_1\cdot w_3)\vec{j} + (v_1\cdot w_2 -v_2\cdot w_1)\vec{k} \\= \left[ \begin{matrix} v_2\cdot w_3-v_3\cdot w_2 \\ v_3\cdot w_1-v_1\cdot w_3 \\ v_1\cdot w_2 -v_2\cdot w_1 \end{matrix} \right] \tag{1} v
×
w
=
det(iv1w1jv2w2kv3w3)=(v2w3v3w2)i
+
(v3w1v1w3)j
+
(v1w2v2w1)k
=v2w3v3w2v3w1v1w3v1w2v2w1(1)

  • 叉乘的几何意义:垂直于两个向量(如果是右手坐标系就要符合右手法则),长度等于两个向量构成的平行四边形面积。

但是,为什么用行列式计算出来的向量就具有上述几何意义呢?

2. 从叉乘的计算到叉乘的几何解释

2.1 公式推导

在这里插入图片描述

假设有一向量 u ⃗ = ( x , y , z ) \vec{u}=(x,y,z) u
=
(x,y,z)
,那么由 u ⃗ , v ⃗ , w ⃗ \vec{u},\vec{v},\vec{w} u
v
w
构成的平行六面体的体积可以由以这三个向量为列向量的矩阵的行列式求得,即,
(2) V o l u m e = d e t ( [ x y z v 1 v 2 v 3 w 1 w 2 w 3 ] ) = ( v 2 ⋅ w 3 − v 3 ⋅ w 2 ) x + ( v 3 ⋅ w 1 − v 1 ⋅ w 3 ) y + ( v 1 ⋅ w 2 − v 2 ⋅ w 1 ) z = [ x y z ] ⋅ [ v 2 ⋅ w 3 − v 3 ⋅ w 2 v 3 ⋅ w 1 − v 1 ⋅ w 3 v 1 ⋅ w 2 − v 2 ⋅ w 1 ] = u ⃗ ⋅ ( v ⃗ × w ⃗ ) Volume= det( \left[ \begin{matrix} x & y & z \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{matrix} \right] ) = (v_2\cdot w_3-v_3\cdot w_2)x + (v_3\cdot w_1-v_1\cdot w_3)y + (v_1\cdot w_2 -v_2\cdot w_1)z \\ = \left[ \begin{matrix} x \\ y \\ z \end{matrix} \right] \cdot \left[ \begin{matrix} v_2\cdot w_3-v_3\cdot w_2 \\ v_3\cdot w_1-v_1\cdot w_3 \\ v_1\cdot w_2 -v_2\cdot w_1 \end{matrix} \right] = \vec{u}\cdot (\vec{v}\times \vec{w}) \tag{2} Volume=det(xv1w1yv2w2zv3w3)=(v2w3v3w2)x+(v3w1v1w3)y+(v1w2v2w1)z=xyzv2w3v3w2v3w1v1w3v1w2v2w1=u
(v
×
w
)
(2)

也就是说, u ⃗ , v ⃗ , w ⃗ \vec{u},\vec{v},\vec{w} u
v
w
构成的平行六面体的体积,等于 u ⃗ \vec{u} u
v ⃗ × w ⃗ \vec{v}\times \vec{w} v
×
w
的点积。

2.2 理解

在这里插入图片描述
平行六面体的体积 = 底 × \times × 高。在这里,“底”就是 v ⃗ , w ⃗ \vec{v},\vec{w} v
w
构成的平行四边形面积;“高”就是 u ⃗ \vec{u} u
v ⃗ , w ⃗ \vec{v},\vec{w} v
w
构成的平行四边形垂直方向的投影。假设这个垂直方向是 n ⃗ \vec{n} n
(已归一化),那么平行六面体的体积 = area(平行四边形) ⋅ u ⃗ ⋅ n ⃗ \cdot \vec{u}\cdot \vec{n} u
n
= u ⃗ ⋅ ( a r e a ⋅ n ⃗ ) \vec{u}\cdot (area\cdot \vec{n}) u
(arean
)

对比公式(2)可得, v ⃗ × w ⃗ = a r e a ⋅ n ⃗ \vec{v}\times \vec{w} = area\cdot \vec{n} v
×
w
=
arean
,即,叉乘的大小等于两个向量构成的平行四边形面积,方向垂直于该平行四边形。

3 参考资料

线性代数的本质:以线性变换的眼光看叉积

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/233740.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • generic host process已停止工作_windows error reporting 1001

    generic host process已停止工作_windows error reporting 1001故障现象:今天在虚拟机里装了win2003系统,每次重启进入系统时都会报错:generichostprocessforwin32services遇到了一个问题需要关闭。解决方法:先从google查了下相关问题,觉得没一个说来符合我的实际情况。于是回头仔细查看日志,怀疑是安装文件太旧引起的。于是更新补丁,当安装完了提示的99个补丁后,再重启进入系统,…

    2022年10月11日
    1
  • DFS(深度优先搜索算法)「建议收藏」

    DFS(深度优先搜索算法)「建议收藏」基本概念深度优先搜索算法(DepthFirstSearch,简称DFS):一种用于遍历或搜索树或图的算法。沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所在边都己被探寻过或者在搜寻时结点不满足条件,搜索将回溯到发现节点v的那条边的起始节点。整个进程反复进行直到所有节点都被访问为止。属于盲目搜索,最糟糕的情况算法时间复杂度为O(!n)。算法思想回溯法(探索与回溯法…

    2022年6月18日
    29
  • java怎么输入字符_java怎么输入一个字符

    java怎么输入字符_java怎么输入一个字符思路:先创建一个Scanner对象,调用Scanner对象的next()方法获取控制台输入的字符串,返回的是一个String类型,因为没有nextChar()方法,所以调用String的charAt(0)方法获取第一个字符,这样一来,我们就输入了一个字符串。输入一个字符的方法:importjava.util.Scanner;Scannerscanner=newScanner(System…

    2022年7月8日
    25
  • mybatis-plus超详细讲解[通俗易懂]

    mybatis-plus超详细讲解[通俗易懂]mybatis-puls超详细讲解本文笔记都是观看狂神老师视频手敲的,敲完的时候发现一件挺奔溃的事,视频地址:https://www.bilibili.com/video/BV17E411N7KN视频地址这个老师讲课真的很好,学java后端的都可以去看一下,从基础到架构很详细,推荐给大家https://space.bilibili.com/95256449/狂神说最近做项目听到老师讲到使用…

    2022年5月5日
    41
  • 《人,绩效和职业道德》及博客读后感

    《人,绩效和职业道德》及博客读后感

    2021年11月18日
    43
  • 实现安全登录的两种方法

    实现安全登录的两种方法登录安全——拦截器和过滤器或权限框架的使用本次我们将采用两种方法实现登录的安全性,首先介绍拦截器和过滤器。一、 过滤器和拦截器:过滤器产生的时间/开始工作的时间:进入Tomcat之后,但是在进servlet之前。Interceptor进入了servlet所以拦截器拦截的是动作,而过滤器拦截的是不合理的跳转页面。1、配置和使用拦截器。<mvc:interceptors>&…

    2022年4月19日
    46

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号