seq2seq模型是什么_seq2seq原理

seq2seq模型是什么_seq2seq原理1seq2seq模型简介seq2seq模型是一种基于【encoder-decoder】(编码器-解码器)框架的神经网络模型,广泛应用于自然语言翻译、人机对话等领域。目前,【seq2seq+attention】(注意力机制)已被学者拓展到各个领域。seq2seq于2014年被提出,注意力机制于2015年被提出,两者于2017年进入火热融合和拓展阶段。通常,编码器和解码器都是一个LSTM网络…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

1 seq2seq模型简介

seq2seq 模型是一种基于【 Encoder-Decoder】(编码器-解码器)框架的神经网络模型,广泛应用于自然语言翻译、人机对话等领域。目前,【seq2seq+attention】(注意力机制)已被学者拓展到各个领域。seq2seq于2014年被提出,注意力机制于2015年被提出,两者于2017年进入疯狂融合和拓展阶段。

1.1 seq2seq原理

通常,编码器和解码器可以是一层或多层 RNN、LSTM、GRU 等神经网络。为方便讲述原理,本文以 RNN 为例。seq2seq模型的输入和输出长度可以不一样。如图,Encoder 通过编码输入序列获得语义编码 C,Decoder 通过解码 C 获得输出序列。

seq2seq模型是什么_seq2seq原理
seq2seq网络结构图

 Encoder

seq2seq模型是什么_seq2seq原理

Decoder

seq2seq模型是什么_seq2seq原理

说明:xi、hi、C、h’i 都是列向量 

1.2 seq2seq+attention原理

普通的 seq2seq 模型中,Decoder 每步的输入都是相同的语义编码 C,没有针对性的学习,导致解码效果不佳。添加注意力机制后,使得每步输入的语义编码不一样,捕获的信息更有针对性,解码效果更佳。

seq2seq模型是什么_seq2seq原理
seq2seq+attention网络结构图

Encoder

seq2seq模型是什么_seq2seq原理

Decoder

\large h=\{h_1,h_2,...,h_n\}

seq2seq模型是什么_seq2seq原理

(1)标准 attention

seq2seq模型是什么_seq2seq原理

其中 ,v、W、U 都是待学习参数,v 为列向量,W、U 为矩阵

(2)attention 扩展

扩展的 attention 机制有3种方法,如下。其中,v、W 都是待学习参数,v 为列向量,W为矩阵。相较于标准的 attention,待学习的参数明显减少了些。

seq2seq模型是什么_seq2seq原理

说明:xi、hi、Ci、h’i、wi 、ei 都是列向量,h 是矩阵 

2 安装seq2seq

若下载比较慢,可以先通过【码云】导入,再在码云上下载,如下:

seq2seq模型是什么_seq2seq原理

本文以MNIST手写数字分类为例,讲解 seq2seq 模型和 AtttionSeq2seq 模型的实现。关于MNIST数据集的说明,见使用TensorFlow实现MNIST数据集分类

笔者工作空间如下: 

seq2seq模型是什么_seq2seq原理

代码资源见–>seq2seq模型和基于注意力机制的seq2seq模型 

3 SimpleSeq2Seq

SimpleSeq2Seq(input_length, input_dim, hidden_dim, output_length, output_dim, depth=1)

Jetbrains全家桶1年46,售后保障稳定

  •  input_length:输入序列长度
  • input_dim:输入序列维度
  • output_length:输出序列长度
  • output_dim:输出序列维度
  • depth:Encoder 和 Decoder 的深度,取值可以为整数或元组。如 depth=3,表示 Encoder 和 Decoder 都有 3 层;depth=(3, 4) 表示 Encoder 有3层和 Decoder 有4层

SimpleSeq2Seq.py

from tensorflow.examples.tutorials.mnist import input_data
from seq2seq.models import SimpleSeq2Seq
from keras.models import Sequential
from keras.layers import Dense,Flatten

#载入数据
def read_data(path):
    mnist=input_data.read_data_sets(path,one_hot=True)
    train_x,train_y=mnist.train.images.reshape(-1,28,28),mnist.train.labels,
    valid_x,valid_y=mnist.validation.images.reshape(-1,28,28),mnist.validation.labels,
    test_x,test_y=mnist.test.images.reshape(-1,28,28),mnist.test.labels
    return train_x,train_y,valid_x,valid_y,test_x,test_y

#SimpleSeq2Seq模型
def seq2Seq(train_x,train_y,valid_x,valid_y,test_x,test_y):
    #创建模型
    model=Sequential()
    seq=SimpleSeq2Seq(input_dim=28,hidden_dim=32,output_length=10,output_dim=10)
    model.add(seq)
    model.add(Flatten())  #扁平化
    model.add(Dense(10,activation='softmax'))
    #查看网络结构
    model.summary()
    #编译模型
    model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])
    #训练模型
    model.fit(train_x,train_y,batch_size=500,nb_epoch=25,verbose=2,validation_data=(valid_x,valid_y))    
    #评估模型
    pre=model.evaluate(test_x,test_y,batch_size=500,verbose=2)
    print('test_loss:',pre[0],'- test_acc:',pre[1])
   
train_x,train_y,valid_x,valid_y,test_x,test_y=read_data('MNIST_data')
seq2Seq(train_x,train_y,valid_x,valid_y,test_x,test_y)

网络各层输出尺寸:

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
model_14 (Model)             (None, 10, 10)            10368     
_________________________________________________________________
flatten_1 (Flatten)          (None, 100)               0         
_________________________________________________________________
dense_23 (Dense)             (None, 10)                1010      
=================================================================
Total params: 11,378
Trainable params: 11,378
Non-trainable params: 0

网络训练结果:

Epoch 23/25
 - 17s - loss: 0.1521 - acc: 0.9563 - val_loss: 0.1400 - val_acc: 0.9598
Epoch 24/25
 - 17s - loss: 0.1545 - acc: 0.9553 - val_loss: 0.1541 - val_acc: 0.9536
Epoch 25/25
 - 17s - loss: 0.1414 - acc: 0.9594 - val_loss: 0.1357 - val_acc: 0.9624
test_loss: 0.14208583533763885 - test_acc: 0.9567999958992004

4 AttentionSeq2Seq

AttentionSeq2Seq(input_length, input_dim, hidden_dim, output_length, output_dim, depth=1)
  •  input_length:输入序列长度
  • input_dim:输入序列维度
  • output_length:输出序列长度
  • output_dim:输出序列维度
  • depth:Encoder 和 Decoder 的深度,取值可以为整数或元组。如 depth=3,表示 Encoder 和 Decoder 都有 3 层;depth=(3, 4) 表示 Encoder 有3层和 Decoder 有4层

AttentionSeq2Seq.py

from tensorflow.examples.tutorials.mnist import input_data
from seq2seq.models import AttentionSeq2Seq
from keras.models import Sequential
from keras.layers import Dense,Flatten

#载入数据
def read_data(path):
    mnist=input_data.read_data_sets(path,one_hot=True)
    train_x,train_y=mnist.train.images.reshape(-1,28,28),mnist.train.labels,
    valid_x,valid_y=mnist.validation.images.reshape(-1,28,28),mnist.validation.labels,
    test_x,test_y=mnist.test.images.reshape(-1,28,28),mnist.test.labels
    return train_x,train_y,valid_x,valid_y,test_x,test_y

#AttentionSeq2Seq模型
def seq2Seq(train_x,train_y,valid_x,valid_y,test_x,test_y):
    #创建模型
    model=Sequential()
    seq=AttentionSeq2Seq(input_length=28,input_dim=28,hidden_dim=32,output_length=10,output_dim=10)
    model.add(seq)
    model.add(Flatten())  #扁平化
    model.add(Dense(10,activation='softmax'))
    #查看网络结构
    model.summary()
    #编译模型
    model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])
    #训练模型
    model.fit(train_x,train_y,batch_size=500,nb_epoch=25,verbose=2,validation_data=(valid_x,valid_y))    
    #评估模型
    pre=model.evaluate(test_x,test_y,batch_size=500,verbose=2)
    print('test_loss:',pre[0],'- test_acc:',pre[1])
   
train_x,train_y,valid_x,valid_y,test_x,test_y=read_data('MNIST_data')
seq2Seq(train_x,train_y,valid_x,valid_y,test_x,test_y)

网络各层输出尺寸:

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
model_102 (Model)            (None, 10, 10)            24459     
_________________________________________________________________
flatten_6 (Flatten)          (None, 100)               0         
_________________________________________________________________
dense_176 (Dense)            (None, 10)                1010      
=================================================================
Total params: 25,469
Trainable params: 25,469
Non-trainable params: 0

网络训练结果:

Epoch 23/25
 - 36s - loss: 0.0533 - acc: 0.9835 - val_loss: 0.0719 - val_acc: 0.9794
Epoch 24/25
 - 37s - loss: 0.0511 - acc: 0.9843 - val_loss: 0.0689 - val_acc: 0.9800
Epoch 25/25
 - 37s - loss: 0.0473 - acc: 0.9860 - val_loss: 0.0700 - val_acc: 0.9802
test_loss: 0.06055343023035675 - test_acc: 0.9825000047683716

SimpleSeq2Seq 模型和 AttentionSeq2Seq 模型的预测精度分别为 0.9568、0.9825,说明添加注意力机制后,预测精度有了明显的提示。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/234854.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • hdu1796 How many integers can you find

    hdu1796 How many integers can you find

    2022年1月8日
    45
  • pycharm2022.01.13 激活码【2022.01最新】

    (pycharm2022.01.13 激活码)最近有小伙伴私信我,问我这边有没有免费的intellijIdea的激活码,然后我将全栈君台教程分享给他了。激活成功之后他一直表示感谢,哈哈~https://javaforall.net/100143.htmlIntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,上面是详细链接哦~2KLK…

    2022年4月1日
    68
  • 探索Android中的Parcel机制(上)

    探索Android中的Parcel机制(上)

    2021年12月10日
    49
  • mysql分区表_MySQL分区表的正确使用方法

    mysql分区表_MySQL分区表的正确使用方法MySQL分区表概述我们经常遇到一张表里面保存了上亿甚至过十亿的记录,这些表里面保存了大量的历史记录。对于这些历史数据的清理是一个非常头疼事情,由于所有的数据都一个普通的表里。所以只能是启用一个或多个带where条件的delete语句去删除(一般where条件是时间)。这对数据库的造成了很大压力。即使我们把这些删除了,但底层的数据文件并没有变小。面对这类问题,最有效的方法就是在使用分区表。最常…

    2022年6月4日
    29
  • PR曲线详解

    PR曲线详解目录PR曲线概念precision(精准率)和recall(召回率)PR曲线功能说明PR曲线概念PR曲线中的P代表的是precision(精准率),R代表的是recall(召回率),其代表的是精准率与召回率的关系,一般情况下,将recall设置为横坐标,precision设置为纵坐标。precision(精准率)和recall(召回率)上述中介少了PR曲线的实质代表为precision(精准率)和recall(召回率),但是这二者是什么呢?下面咱们进行相关的讲述。首先,我们了解一下混淆矩阵,如下表

    2022年6月30日
    244
  • arcgis10从初学到精通电子版_arcgis入门到精通

    arcgis10从初学到精通电子版_arcgis入门到精通本教程内容包括:ArcGIS平台简介、ArcGIS应用基础、空间数据的采集与组织、空间数据的转换与处理、空间数据的可视化表达、GIS空间分析导论、矢量数据的空间分析、栅格数据的空间分析、三维分析、地统计分析等。适用于高等学校GIS专业、测绘工程、国土测绘与规划等专业,大学本科研究ArcGIS实验教程:ArcGIS10.2手把手图文安装教程ArcGIS实验教程——实验一:ArcGIS软件的认识与使用ArcGIS实验教程——实验二:地理配准完整操作步骤ArcGIS实验教程——实验三:矢量数据采集与编辑

    2025年9月15日
    5

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号