二阶微分方程龙格库塔法_二阶龙格库塔法公式

二阶微分方程龙格库塔法_二阶龙格库塔法公式一、计算公式对于形如以下的常微分方程:采用四阶龙格库塔法的计算公式:四阶龙格库塔法精度为4,属于单步递推法。单步递推法的基本思想是从(x(i),y(i))点出发,以某一斜率沿直线达到(x(i+1),y(i+1))点。二、实例计算对于下述二阶方程:f(q)为分段函数1、基本思想:令位移q为y(1),q的一阶导dq/dt为y(2),因此可得:dq/dt=y(2)令f(q)=fy令q的二阶导ddq/dt^2=-2*eptheton*y(2)-fy+Fm

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

一、计算公式

对于形如以下的常微分方程:

\frac{dy}{dx}=f(x,y)

y(a)=y0

采用四阶龙格库塔法的计算公式

y_{i+1}=y_i+h/6*(K_1+2K_2+2*K_3+K_4)

K_1=f(x_i,y_i)

K_2=f(x_i+h/2,y_i+h/2*K_1)

K_3=f(x_i+h/2,y_i+h/2*K_2)

K_4=f(x_i+h,y_i+h*K_3)

四阶 龙格库塔法精度为4,属于单步递推法

单步递推法的基本思想是从(x(i),y(i))点出发,以某一斜率沿直线达到(x(i+1),y(i+1))点。

二、实例计算

从上述定义可以看出,龙格库塔实质上是求一阶微分方程,但是如果将一阶导看作变量,则二阶导也不过是这个变量的一阶导而已。

接下来就看实例吧:

对于下述二阶方程:

{\ddot{q}}+2*\varepsilon *{\dot{q}}+q=Fm+Fah*cos(\Omega *t)

1、基本思想:

令位移为    q=u(1)

q的一阶导,即位移的一阶导(速度)为   \dot{q}=u(2)

q的二阶导   \dot{u(2))}=-2* \varepsilon *u(2)-u(1)+Fm+Fah*cos(\Omega *t)

求解位移u(1)的龙格库塔计算方法如下:

KK1=u(2);
KK2=u(2)+h/2*KK1;
KK3=u(2)+h/2*KK2;
KK4=u(2)+h*KK3;
u(1)=u(1)+h/6*(KK1+2*KK2+2*KK3+KK4);

Jetbrains全家桶1年46,售后保障稳定

求解速度u(2)的龙格库塔计算方法如下:

K1=-2*eptheton*u(2)-u(1)+Fm+Fah*wh*wh*sin(wh*tao+fav_h);
K2=-2*eptheton*(u(2)+h/2*K1)-(u(1)+h/2)+Fm+Fah*wh*wh*sin(wh*tao+fav_h);
K3=-2*eptheton*(u(2)+h/2*K2)-(u(1)+h/2)+Fm+Fah*wh*wh*sin(wh*tao+fav_h);
K4=-2*eptheton*(u(2)+h*K3)-(u(1)+h)+Fm+Fah*wh*wh*sin(wh*tao+fav_h);
u(2)=u(2)+h/6*(K1+2*K2+2*K3+K4);

2、编程实现

参数设置:

h=0.001;       % 步长
t0=0:h:400;    % 总时长
w=5;
ep=0.02;
Fm=0.1;
Fah=0.05;
u(1)=0;u(2)=0;  % 初值

总的程序实现

h=0.001;
t0=0:h:400;
w=5;
ep=0.02;
Fm=0.1;
Fah=0.05;
u(1)=0;u(2)=0;
for i=1:length(t0)   % 进行多次迭代
    tao=t0(i);
    u=RK(u,tao,h,ep,w,Fm,Fah);     
    Result(i,:)=u;   % 将每次迭代的位移和速度保存
end
figure(1)
subplot(2,1,1)
plot(t0,Result(:,1))      % 绘制位移图
xlabel('Time')
ylabel('displacement')
subplot(2,1,2)
plot(t0,Result(:,2))      % 绘制速度图
xlabel('Time')
ylabel('velocity')

function u=RK(u,tao,h,ep,w,Fm,Fah)
KK1=u(2);
KK2=u(2)+h/2*KK1;
KK3=u(2)+h/2*KK2;
KK4=u(2)+h*KK3;
u(1)=u(1)+h/6*(KK1+2*KK2+2*KK3+KK4);
K1=-2*ep*u(2)-u(1)+Fm+Fah*cos(w*tao);
K2=-2*ep*(u(2)+h/2*K1)-u(1)-h/2+Fm+Fah*cos(w*tao);
K3=-2*ep*(u(2)+h/2*K2)-u(1)-h/2+Fm+Fah*cos(w*tao);
K4=-2*ep*(u(2)+h*K3)-u(1)-h+Fm+Fah*cos(w*tao);
u(2)=u(2)+h/6*(K1+2*K2+2*K3+K4);
end

结果图如下所示

二阶微分方程龙格库塔法_二阶龙格库塔法公式

值得特别注意的是

u=RK(u,tao,h,ep,w,Fm,Fah);

输入的u与输出的u一定要符号一致,从而确保下一次迭代的初始值是上一次的值。确保迭代能一直进行下去。

三、辅助验证

接下来用MATLAB自带的ode45函数来进行验证。

之前已经写过ode45函数的用法,在此不再进行介绍。

源程序如下:

t0=0:0.001:400;
w=5;
ep=0.02;
Fm=0.1;
Fah=0.05;
y0=[0 0];
[t,u]=ode45(@(t,u) odefun(t,u,w,ep,Fm,Fah),t0,y0);
figure(1)
subplot(2,1,1)
plot(t,u(:,1))
xlabel('Time')
ylabel('displacement')
subplot(2,1,2)
plot(t,u(:,2))
xlabel('Time')
ylabel('velocity')
function du=odefun(t,u,w,ep,Fm,Fah)
du=[u(2);
    -2*ep*u(2)-u(1)+Fm+Fah*cos(w*t)]; 
end

运算结果图如下所示

二阶微分方程龙格库塔法_二阶龙格库塔法公式

两中方法计算的结果是一样的。

创作不易,如有帮助,记得点个赞呐。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/234982.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 华为云服务器手机密码找回,忘记华为账号密码怎么办?两招就能帮你解决

    华为云服务器手机密码找回,忘记华为账号密码怎么办?两招就能帮你解决每天跟我们生活息息相关的账号密码,实在是太多太多了。银行卡密码、支付密码、游戏账号密码、各种APP账号密码等等……账号密码太多,也导致了我们有时候会忘记某些账号密码。那么问题来了,如果忘记了华为账号密码,怎么破?别担心,官维君教大家两招如何找回密码,一起来看看吧!第一招:登录华为云服务官网找回密码登录华为云服务官网☛https://cloud.huawei.com/,点击“忘记密码”,然后根据提示…

    2022年6月18日
    233
  • PureMVC与MVC框架

    PureMVC与MVC框架一 定义 全名 ModelViewCon 模型 视图 控制器的缩写 一种软件的典范 将逻辑数据界面分离的代码组织方法 二 PureMVCCoreS 核心文件 View cs IView cs Controller cs IController cs 3 Model cs IModel cs 三 PureMVC 优缺点 1 利用中介者 代理者 命令实现解耦 使得 Model View Controller 之间耦合性降低 提升了部

    2025年6月1日
    2
  • 泰勒展开式_常用泰勒公式大全图片

    泰勒展开式_常用泰勒公式大全图片数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值

    2022年8月4日
    6
  • Alex 的 Hadoop 菜鸟教程: 第4课 Hadoop 安装教程 – HA方式 (2台服务器)

    Alex 的 Hadoop 菜鸟教程: 第4课 Hadoop 安装教程 – HA方式 (2台服务器)具体的讲解一下如何将hadoop安装成HA模式

    2022年6月4日
    26
  • 什么是PV,UV。

    什么是PV,UV。

    2022年1月13日
    55
  • java如何生成随机数「建议收藏」

    java如何生成随机数「建议收藏」java生成随机数有两种方法:1、使用Math方法,Math.random()随机生成一个double类型[0,1),如果想生成1~100的随机数:如:intnum=(int)(Math.random()*100);2、使用Random方法,Randomrandom=newRandom();(中间可以传值,传值后生成的是固定的了,详细的请关注下面星球,有写)。如:rando…

    2022年7月26日
    6

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号