codeforces1528c_us open of surfing

codeforces1528c_us open of surfingCodeForces 1073F Choosing Two Paths

大家好,又见面了,我是你们的朋友全栈君。

Description

You are given an undirected unweighted tree consisting of \(n\) vertices.

An undirected tree is a connected undirected graph with \(n−1\) edges.

Your task is to choose two pairs of vertices of this tree (all the chosen vertices should be distinct) \((x_1,y_1)\) and \((x_2,y_2)\) in such a way that neither \(x_1\) nor \(y_1\) belong to the simple path from \(x_2\) to \(y_2\) and vice versa (neither \(x_2\) nor \(y_2\) should not belong to the simple path from \(x_1\) to \(y_1\)).

It is guaranteed that it is possible to choose such pairs for the given tree.

Among all possible ways to choose such pairs you have to choose one with the maximum number of common vertices between paths from \(x_1\) to \(y_1\) and from \(x_2\) to \(y_2\). And among all such pairs you have to choose one with the maximum total length of these two paths.

It is guaranteed that the answer with at least two common vertices exists for the given tree.

The length of the path is the number of edges in it.

The simple path is the path that visits each vertex at most once.

Input

The first line contains an integer \(n\) — the number of vertices in the tree \((6 \le n \le 2 \cdot 10^5)\).

Each of the next \(n−1\) lines describes the edges of the tree.

Edge \(i\) is denoted by two integers \(u_i\) and \(v_i\), the labels of vertices it connects \((1\le u_i,v_i\le n, u_i \neq v_i)\).

It is guaranteed that the given edges form a tree.

It is guaranteed that the answer with at least two common vertices exists for the given tree.

Output

Print any two pairs of vertices satisfying the conditions described in the problem statement.

It is guaranteed that it is possible to choose such pairs for the given tree.

Examples

Input

7
1 4
1 5
1 6
2 3
2 4
4 7

Output

3 6
7 5

Input

9
9 3
3 5
1 2
4 3
4 7
1 7
4 6
3 8

Output

2 9
6 8

Input

10
6 8
10 3
3 7
5 8
1 7
7 2
2 9
2 8
1 4

Output

10 6
4 5

Input

11
1 2
2 3
3 4
1 5
1 6
6 7
5 8
5 9
4 10
4 11

Output

9 11
8 10

Note

The picture corresponding to the first example:

img

The intersection of two paths is \(2\) (vertices \(1\) and \(4\)) and the total length is \(4+3=7\).

The picture corresponding to the second example:

img

The intersection of two paths is \(2\) (vertices \(3\) and \(4\)) and the total length is \(5+3=8\).

The picture corresponding to the third example:

img

The intersection of two paths is \(3\) (vertices \(2\), \(7\) and \(8\)) and the total length is \(5+5=10\).

The picture corresponding to the fourth example:

img

The intersection of two paths is \(5\)(vertices \(1\), \(2\), \(3\), \(4\) and \(5\)) and the total length is \(6+6=12\).

Solution

题意:给定一棵树,找两组点\((x_1, y_1)\)\((x_2, y_2)\),使得\(x_1,y_1\)不在\(x_2\)\(y_2\)之间的路径上,\(x_2,y_2\)不在\(x_1\)\(y_1\)之间的路径上,要求:

  • \(x_1,y_1\)之间的路径与\(x_2,y_2\)之间的路径的重合边数最多
  • 满足第一个条件的前提下,两条路径的长度之和最大

我们考虑两条路径的公共路径,不妨记作\((x, y)\)\(x\)\(y\)的LCA记作\(a\),则\(a\)或者是\(x\)\(y\)中的一个,或者是\(x\)\(y\)路径上的其他节点,所以我们先求出每个点的度大于2的后代的最大深度,以及每个点往父亲方向能够到达的最远距离,然后再一次DFS,对于任何一个点\(u\)

  • 如果\(u\)有两个孩子节点具有度大于2的后代,则尝试更新答案
  • 否则,若\(u\)只有一个孩子节点具有度大于2的后代,且\(u\)自身的度大于2,则尝试更新答案
#include <bits/stdc++.h> using namespace std; const int maxn = 200011; struct triple { triple(int _u = 0, int _v1 = 0, int _v2 = 0) : u(_u), v1(_v1), v2(_v2) {} int u, v1, v2; bool operator<(const triple &b) const {return u < b.u;} }; vector<int> w[maxn]; int deg[maxn], dep[maxn]; int x1, y1, x2, y2; pair<pair<int, int>, triple> val[maxn]; // <<deg=3的后代(u)的最大深度, u到两个最远后代(v1, v2)的距离之和>, <u, v1, v2>> pair<int, int> ans; pair<int, int> mxdep[maxn], updis[maxn]; // <最远距离, u> vector<pair<pair<int, int>, int>> downdis[maxn]; // <<后代(u)的最大深度, u>, 到该后代的路径上的第一个点> void dfs1(int u, int d, int pre) { dep[u] = d; mxdep[u] = make_pair(d, u); for (int v : w[u]) { if (v == pre) continue; dfs1(v, d + 1, u); mxdep[u] = max(mxdep[u], mxdep[v]); downdis[u].push_back(make_pair(mxdep[v], v)); } sort(downdis[u].begin(), downdis[u].end(), greater<pair<pair<int, int>, int>>()); } void dfs2(int u, int pre) { if (~pre) { updis[u] = make_pair(1 + updis[pre].first, updis[pre].second); auto tp = downdis[pre][0].second == u ? downdis[pre][1].first : downdis[pre][0].first; if (downdis[pre].size() > 1) { updis[u] = max(updis[u], make_pair(tp.first + 1, tp.second)); } } else { updis[u] = make_pair(0, u); } for (int v : w[u]) { if (v == pre) continue; dfs2(v, u); } } void dfs3(int u, int pre) { vector<pair<pair<pair<int, int>, triple>, int>> vec; for (int v : w[u]) { if (v == pre) continue; dfs3(v, u); if (val[v].first.first) { vec.push_back(make_pair(val[v], v)); } } if (vec.size() >= 2) { sort(vec.begin(), vec.end(), greater<pair<pair<pair<int, int>, triple>, int>>()); auto &x = vec[0].first, &y = vec[1].first; val[u] = x; int a = x.first.first + y.first.first - 2 * dep[u]; int b = x.first.second + y.first.second; auto c = make_pair(a, b); if (c > ans) { ans = c; x1 = x.second.v1, y1 = y.second.v1; x2 = x.second.v2, y2 = y.second.v2; } } else { if (vec.size() == 1) { val[u] = vec[0].first; } else if (deg[u] >= 3) { assert(downdis[u].size() >= 2); auto &x = downdis[u][0].first, &y = downdis[u][1].first; int tp = x.first + y.first - 2 * dep[u]; val[u] = make_pair(make_pair(dep[u], tp), triple(u, x.second, y.second)); } else { val[u] = make_pair(make_pair(0, 0), triple()); } if (vec.size() == 1 && deg[u] >= 3) { vector<pair<int, int>> cand; cand.push_back(updis[u]); int up = min(3, (int)downdis[u].size()); for (int i = 0; i < up; ++i) { if (downdis[u][i].second == vec[0].second) continue; cand.push_back(downdis[u][i].first); } assert(cand.size() >= 2); sort(cand.begin(), cand.end(), greater<pair<int, int>>()); auto &x = vec[0].first; int a = x.first.first - dep[u]; int b = x.first.second + cand[0].first + cand[1].first; auto c = make_pair(a, b); if (c > ans) { ans = c; x1 = x.second.v1, y1 = cand[0].second; x2 = x.second.v2, y2 = cand[1].second; } } } } int main() { int n; scanf("%d", &n); for (int i = 1; i < n; ++i) { int u, v; scanf("%d%d", &u, &v); w[u].push_back(v); w[v].push_back(u); ++deg[u]; ++deg[v]; } ans = make_pair(0, 0); dfs1(1, 0, -1); dfs2(1, -1); dfs3(1, -1); printf("%d %d\n%d %d\n", x1, y1, x2, y2); return 0; }

转载于:https://www.cnblogs.com/hitgxz/p/9977668.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/107195.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • JDK安装与环境变量配置「建议收藏」

    JDK安装与环境变量配置「建议收藏」下载JDK到Oracle官网下载JDK安装JDK安装JDK时,除了修改安装目录,其他的一路【下一步】,傻瓜式安装。注:当提示安装JRE时,可以选择不要安装。因为JDK已经自带了JRE。安装JDK测试JDK是否安装成功在配置好环境变量后,可以进入cmd中检查Java是否安装正确,检查的命令为java-versionJDK安装成功环境变量详解JAVA_HOME…

    2022年5月10日
    43
  • [深入研究4G/5G/6G专题-11]: 测试-高通QXDM 、QCAT与空口协议验证总体测试架构与测试步骤「建议收藏」

    [深入研究4G/5G/6G专题-11]: 测试-高通QXDM 、QCAT与空口协议验证总体测试架构与测试步骤「建议收藏」作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:https://blog.csdn.net/HiWangWenBing/article/details/124306527目录前言:第1步:硬件连接与网络配置1.1网络连接与测试架构1.2硬件连接与网络配置第2步:CPEWeb主要功能配置2.0http登录2.1获取设备状态信息2.2设置扫描频段(与基站的频段一致,避免其他干扰消息)2.3使能Radio

    2022年10月3日
    3
  • Spring快速上手

    Spring快速上手

    2021年9月15日
    54
  • Retrofit2.0 请求数据 一直出返回网络错误,错误代码 414

    Retrofit2.0 请求数据 一直出返回网络错误,错误代码 414今天使用rettorfit去请求数据一直不成功,请求逻辑上以及请求参数上都没有问题,后台也验证过是通的(我用xutils3请求也是成功的,后来意识到xutils3是将参数放在请求体里面),但是就是一直不能请求成功,后来终于发现还是参数的问题。由于使用的是retrofitPOST请求,查询字段用的是@QueryMap,而这个查询时是直接拼接在url的后面,但是url的请求接口是有长度限制的…

    2022年5月5日
    58
  • java重写和重载的区别总结_java覆盖和重载

    java重写和重载的区别总结_java覆盖和重载重写只存在于子类与父类中,重载存在于一个类中。具体区别如下:一、重写(override)override是重写(覆盖)了一个方法,以实现不同的功能。一般是用于子类在继承父类时,重写(重新实现)父类中的方法。重写(覆盖)的规则:1、重写方法的参数列表必须完全与被重写的方法的相同,否则不能称其为重写而是重载.2、重写方法的访问修饰符一定要大于被重写方法的访问修饰符(public>protecte…

    2025年8月29日
    7
  • Hibernate、Spring和Struts工作原理及使用理由

    Hibernate、Spring和Struts工作原理及使用理由

    2021年8月8日
    43

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号