谢惠民,恽自求,易法槐,钱定边编数学分析习题课讲义16.2.3练习题参考解答[来自陶哲轩小弟]…

谢惠民,恽自求,易法槐,钱定边编数学分析习题课讲义16.2.3练习题参考解答[来自陶哲轩小弟]…

1.设已知 $ \sum\limits_{n = 1}^\infty {
{
{\left( { – 1} \right)}^{n – 1}}{a_n}} = A,\sum\limits_{n = 1}^\infty {
{a_{2n – 1}}} = B $ ,证明: $ \sum\limits_{n = 1}^\infty {
{a_n}} $ 收敛并求其和.

解:显然有
\[\sum\limits_{n = 1}^\infty {
{a_n}} = 2\sum\limits_{n = 1}^\infty {
{a_{2n – 1}}} – \sum\limits_{n = 1}^\infty {
{
{\left( { – 1} \right)}^{n – 1}}{a_n}} = 2B – A.\]

2.设 $ P(x)=a_0+a_1x+\cdots+a_mx^m $ 为 $ m $ 次多项式,求级数 $ \sum\limits_{n = 0}^\infty {\frac{
{P\left( n \right)}}{
{n!}}} $ 的和.

解:事实上,
$$\begin{align*}{b_k} &= \sum\limits_{n = 0}^\infty {\frac{
{
{n^k}}}{
{n!}}} = \sum\limits_{n = 1}^\infty {\frac{
{
{n^{k – 1}}}}{
{\left( {n – 1} \right)!}}} = \sum\limits_{n = 0}^\infty {\frac{
{
{
{\left( {n + 1} \right)}^{k – 1}}}}{
{n!}}} \\&= {b_{k – 1}} + C_{k – 1}^1{b_{k – 2}} + \cdots + C_{k – 1}^{k – 2}{b_1} + {b_0},\end{align*}$$

其中 $ b_0=e $ .
由此得到的数叫Bell数,记为 $ B_n $ ,并且
\[B\left( x \right) = \sum\limits_{n = 0}^\infty {\frac{
{B\left( n \right)}}{
{n!}}{x^n}} = {e^{
{e^x} – 1}}.\]

回到原题,我们有\[\sum\limits_{n = 0}^\infty {\frac{
{P\left( n \right)}}{
{n!}}} = e\sum\limits_{k = 0}^m {
{a_k}{B_k}} .\]

3.求 $ 1 – \frac{
{
{2^3}}}{
{1!}} + \frac{
{
{3^3}}}{
{2!}} – \frac{
{
{4^3}}}{
{3!}} + \cdots $ 的和.

解:事实上,
$$\begin{align*}{b_k} &= \sum\limits_{n = 0}^\infty {
{
{\left( { – 1} \right)}^n}\frac{
{
{n^k}}}{
{n!}}} = \sum\limits_{n = 1}^\infty {
{
{\left( { – 1} \right)}^n}\frac{
{
{n^{k – 1}}}}{
{\left( {n – 1} \right)!}}} = \sum\limits_{n = 0}^\infty {
{
{\left( { – 1} \right)}^{n+1}}\frac{
{
{
{\left( {n + 1} \right)}^{k – 1}}}}{
{n!}}} \\& =- {b_{k – 1}} – C_{k – 1}^1{b_{k – 2}} – \cdots – C_{k – 1}^{k – 2}{b_1} – {b_0},\end{align*}$$

其中 $ b_0=1/e $ .因此 $ b_1=-1/e,b_2=0,b_3=1/e $ .

因此
$$\begin{align*}& 1 – \frac{
{
{2^3}}}{
{1!}} + \frac{
{
{3^3}}}{
{2!}} – \frac{
{
{4^3}}}{
{3!}} + \cdots = \sum\limits_{n = 0}^\infty {
{
{\left( { – 1} \right)}^n}\frac{
{
{
{\left( {n + 1} \right)}^3}}}{
{n!}}} \\=& {b_3} + 3{b_2} + 3{b_1} + {b_0} = – \frac{1}{e}.\end{align*}$$

4.求下列级数的和:(1) $ \sum\limits_{n = 1}^\infty {\arctan \frac{1}{
{2{n^2}}}} $ ; (2) $ \sum\limits_{n = 1}^\infty {\arctan \frac{2}{
{
{n^2}}}} $ .

解:事实上
\[\sum\limits_{n = 1}^\infty {\arctan \frac{1}{
{2{n^2}}}} = \sum\limits_{n = 1}^\infty {\left( {\arctan \frac{1}{
{2n – 1}} – \arctan \frac{1}{
{2n + 1}}} \right)} = \frac{\pi }{4}.\]


\[\sum\limits_{n = 1}^\infty {\arctan \frac{2}{
{
{n^2}}}} = \sum\limits_{n = 1}^\infty {\left( {\arctan \frac{1}{
{n – 1}} – \arctan \frac{1}{
{n + 1}}} \right)} = \frac{\pi }{2} + \frac{\pi }{4} = \frac{
{3\pi }}{4}.\]

5.设 $ a>1 $ ,求 $ \sum\limits_{n = 0}^\infty {\frac{
{
{2^n}}}{
{
{a^{
{2^n}}} + 1}}} $ 的和.

解:事实上
$$\begin{align*}\sum\limits_{n = 0}^\infty {\frac{
{
{2^n}}}{
{
{a^{
{2^n}}} + 1}}} &= \frac{1}{
{a + 1}} + \sum\limits_{n = 1}^\infty {\frac{
{
{2^n}}}{
{
{a^{
{2^n}}} + 1}}} = \frac{1}{
{a + 1}} – \frac{1}{
{a – 1}} + \frac{1}{
{a + 1}} + \sum\limits_{n = 1}^\infty {\frac{
{
{2^n}}}{
{
{a^{
{2^n}}} + 1}}} \\&= \frac{1}{
{a + 1}} – \frac{2}{
{
{a^2} – 1}} + \sum\limits_{n = 1}^\infty {\frac{
{
{2^n}}}{
{
{a^{
{2^n}}} + 1}}} = \frac{1}{
{a + 1}} – \frac{
{
{2^2}}}{
{
{a^{
{2^2}}} – 1}} + \sum\limits_{n = 2}^\infty {\frac{
{
{2^n}}}{
{
{a^{
{2^n}}} + 1}}} \\&= \frac{1}{
{a + 1}} – \mathop {\lim }\limits_{n \to \infty } \frac{
{
{2^{n + 1}}}}{
{
{a^{
{2^{n + 1}}}} – 1}} = \frac{1}{
{a + 1}}.\end{align*}$$

6.求 $ 1 + \frac{1}{3} – \frac{1}{5} – \frac{1}{7} + \frac{1}{9} + \frac{1}{
{11}} – \cdots $ 的和.

解:
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\left( {\frac{1}{
{8n – 7}} + \frac{1}{
{8n – 5}} – \frac{1}{
{8n – 3}} – \frac{1}{
{8n – 1}}} \right)} = \sum\limits_{n = 1}^\infty {\int_0^1 {\left( {
{x^{8n – 8}} + {x^{8n – 6}} – {x^{8n – 4}} – {x^{8n – 2}}} \right)} } \\=& \int_0^1 {\sum\limits_{n = 1}^\infty {\left( {
{x^{8n – 8}} + {x^{8n – 6}} – {x^{8n – 4}} – {x^{8n – 2}}} \right)} dx} = \int_0^1 {\frac{
{1 + {x^2} – {x^4} – {x^6}}}{
{1 – {x^8}}}dx} \\= &\left. {\frac{
{\arctan \left( {1 + \sqrt 2 x} \right) – \arctan \left( {1 – \sqrt 2 x} \right)}}{
{\sqrt 2 }}} \right|_0^1 = \frac{\pi }{
{2\sqrt 2 }}.\end{align*}$$

7.求 $ 1 – \frac{1}{7} + \frac{1}{9} – \frac{1}{
{15}} + \cdots $ 的和.

解:
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\left( {\frac{1}{
{8n – 7}} – \frac{1}{
{8n – 1}}} \right)} = \sum\limits_{n = 1}^\infty {\int_0^1 {\left( {
{x^{8n – 8}} – {x^{8n – 2}}} \right)} } \\=& \int_0^1 {\sum\limits_{n = 1}^\infty {\left( {
{x^{8n – 8}} – {x^{8n – 2}}} \right)} dx} = \int_0^1 {\frac{
{1 – {x^6}}}{
{1 – {x^8}}}dx} \\= &\left. {\frac{
{2\arctan x + \sqrt 2 \arctan \left( {1 + \sqrt 2 x} \right) – \arctan \left( {1 – \sqrt 2 x} \right)}}{4}} \right|_0^1 = \frac{
{\sqrt 2 + 1}}{8}\pi .\end{align*}$$

8.求 $ 1 – \frac{1}{4} + \frac{1}{7} – \frac{1}{
{10}} + \cdots $ 的和.

解:
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\left( {\frac{1}{
{6n – 5}} – \frac{1}{
{6n – 2}}} \right)} = \sum\limits_{n = 1}^\infty {\int_0^1 {\left( {
{x^{6n – 6}} – {x^{6n – 3}}} \right)} } \\= &\int_0^1 {\sum\limits_{n = 1}^\infty {\left( {
{x^{6n – 6}} – {x^{6n – 3}}} \right)} dx} = \int_0^1 {\frac{
{1 – {x^3}}}{
{1 – {x^6}}}dx} = \int_0^1 {\frac{1}{
{1 + {x^3}}}dx} \\=& \left. {\left( { – \frac{1}{6}\ln \left( {
{x^2} – x + 1} \right) + \frac{1}{3}\ln \left( {x + 1} \right) + \frac{
{\arctan \frac{
{2x – 1}}{
{\sqrt 3 }}}}{
{\sqrt 3 }}} \right)} \right|_0^1 = \frac{
{\sqrt 3 \pi + 3\ln 2}}{9}.\end{align*}$$

9.设 $ {a_n} = 1 + \frac{1}{2} + \cdots + \frac{1}{n},n = 1,2, \cdots $ ,求 $ \sum\limits_{n = 1}^\infty {\frac{
{
{a_n}}}{
{n\left( {n + 1} \right)}}} $ 的和.

解:
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\frac{
{
{a_n}}}{
{n\left( {n + 1} \right)}}} = \sum\limits_{n = 1}^\infty {\frac{
{1 + \frac{1}{2} + \cdots + \frac{1}{n}}}{
{n\left( {n + 1} \right)}}} \\=&\sum\limits_{n = 1}^\infty {\left( {\frac{
{1 + \frac{1}{2} + \cdots + \frac{1}{n}}}{n} – \frac{
{1 + \frac{1}{2} + \cdots + \frac{1}{
{n + 1}}}}{
{n + 1}}} \right)} + \sum\limits_{n = 1}^\infty {\frac{1}{
{
{
{\left( {n + 1} \right)}^2}}}} \\= & 1 – \mathop {\lim }\limits_{n \to \infty } \frac{
{1 + \frac{1}{2} + \cdots + \frac{1}{
{n + 1}}}}{
{n + 1}} + \left( {\frac{
{
{\pi ^2}}}{6} – 1} \right) = \frac{
{
{\pi ^2}}}{6} – \mathop {\lim }\limits_{n \to \infty } \frac{
{\frac{1}{
{n + 2}}}}{1} = \frac{
{
{\pi ^2}}}{6}.\end{align*}$$

10.求 $ \sum\limits_{n = 0}^\infty {\left( {\frac{1}{
{4n + 1}} + \frac{1}{
{4n + 3}} – \frac{1}{
{2n + 2}}} \right)} $ 的和.

解:
$$\begin{align*}&\sum\limits_{n = 0}^\infty {\left( {\frac{1}{
{4n + 1}} + \frac{1}{
{4n + 3}} – \frac{1}{
{2n + 2}}} \right)} = \sum\limits_{n = 0}^\infty {\int_0^1 {\left( {
{x^{4n}} + {x^{4n + 2}} – {x^{2n + 1}}} \right)} } \\= &\int_0^1 {\sum\limits_{n = 0}^\infty {\left( {
{x^{4n}} + {x^{4n + 2}} – {x^{2n + 1}}} \right)} dx} = \int_0^1 {\left( {\frac{
{1 + {x^2}}}{
{1 – {x^4}}} – \frac{x}{
{1 – {x^2}}}} \right)dx} \\=& \int_0^1 {\frac{1}{
{1 + x}}dx} = \ln 2.\end{align*}$$

11.求 $ 1 – \frac{1}{4} + \frac{1}{6} – \frac{1}{9} + \frac{1}{
{11}} – \frac{1}{
{14}} + \cdots $ 的和.

解:
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\left( {\frac{1}{
{5n – 4}} – \frac{1}{
{5n – 1}}} \right)} = \sum\limits_{n = 1}^\infty {\int_0^1 {\left( {
{x^{5n – 5}} – {x^{5n – 2}}} \right)dx} } \\=& \int_0^1 {\sum\limits_{n = 1}^\infty {\left( {
{x^{5n – 5}} – {x^{5n – 2}}} \right)} dx} = \int_0^1 {\frac{
{1 – {x^3}}}{
{1 – {x^5}}}dx} \\= &\left. {\left( {\frac{
{\left( {5 – \sqrt 5 } \right)/10}}{
{
{x^2} + \frac{
{\sqrt 5 + 1}}{2}x + 1}} + \frac{
{\left( {5 + \sqrt 5 } \right)/10}}{
{
{x^2} + \frac{
{ – \sqrt 5 + 1}}{2}x + 1}}} \right)} \right|_0^1 = \frac{
{\sqrt {25 + 10\sqrt 5 }}}{
{25}}\pi .\end{align*}$$

12.求 $ \frac{
{
{x^3}}}{
{3!}} + \frac{
{
{x^9}}}{
{9!}} + \frac{
{
{x^{15}}}}{
{15!}} + \cdots $ 的和函数.

解:事实上,方程 $ \omega^3=1 $ 有三个根 $ 1,{ – \frac{1}{2} + \frac{
{\sqrt 3 i}}{2}},{ – \frac{1}{2} – \frac{
{\sqrt 3 i}}{2}} $ .利用 $ \sinh $ 便可得到所需函数

$$\begin{align*}&\frac{
{\sinh x + \sinh \left( { – \frac{1}{2} + \frac{
{\sqrt 3 i}}{2}} \right)x + \sinh \left( { – \frac{1}{2} – \frac{
{\sqrt 3 i}}{2}} \right)x}}{3}\\= & – \frac{2}{3}\sinh \frac{x}{2}\cos \frac{
{\sqrt 3 x}}{2} + \frac{
{\sinh x}}{3} = \frac{
{
{x^3}}}{
{3!}} + \frac{
{
{x^9}}}{
{9!}} + \frac{
{
{x^{15}}}}{
{15!}} + \cdots .\end{align*}$$

我们还有

$$\begin{align*}&{\frac{
{\sin x +\sin \left( { – \frac{1}{2} + \frac{
{\sqrt 3 i}}{2}} \right)x + \sin \left( { – \frac{1}{2} – \frac{
{\sqrt 3 i}}{2}} \right)x}}{
{ – 3}}}\\= &\frac{2}{3}\sin \frac{x}{2}\cosh \frac{
{\sqrt 3 x}}{2} – \frac{
{\sin x}}{3} = \frac{
{
{x^3}}}{
{3!}} – \frac{
{
{x^9}}}{
{9!}} + \frac{
{
{x^{15}}}}{
{15!}} – \frac{
{
{x^{21}}}}{
{21!}} + \cdots .\end{align*}$$

13.求 $ \sum\limits_{n = 1}^\infty {\frac{
{
{
{\left[ {\left( {n – 1} \right)!} \right]}^2}}}{
{\left( {2n} \right)!}}{
{\left( {2x} \right)}^{2n}}} $ 的和函数.

解:在 $ |x|<1 $ 上对 $ S(x) $ 逐项求导,知 $ S’\left( x \right) = 2\sum\limits_{n = 1}^\infty {\frac{
{
{
{\left[ {\left( {n – 1} \right)!} \right]}^2}}}{
{\left( {2n – 1} \right)!}}{
{\left( {2x} \right)}^{2n – 1}}} $ ,且 $ S”\left( x \right) = 4\sum\limits_{n = 1}^\infty {\frac{
{
{
{\left[ {\left( {n – 1} \right)!} \right]}^2}}}{
{\left( {2n – 2} \right)!}}{
{\left( {2x} \right)}^{2n – 2}}} $ .由此可得 $ (1-x^2)S”(x)-xS'(x)=4 $ .在两端乘以 $ {(1-x^2)}^{-1/2} $ ,我们有

\[{\left( {\sqrt {1 – {x^2}} S’\left( x \right)} \right)^\prime } = \frac{4}{
{\sqrt {1 – {x^2}} }},\]故

\[S\left( x \right) = \frac{
{4\arcsin x}}{
{\sqrt {1 – {x^2}} }} + \frac{1}{
{\sqrt {1 – {x^2}} }},\quad \left| x \right| < 1.\]

14.求 $ \sum\limits_{n = 1}^\infty {\frac{
{
{x^{n + 1}}}}{
{\left( {1 – {x^n}} \right)\left( {1 – {x^{n + 1}}} \right)}}} $ 的和函数.

解:注意到
$$\begin{align*}&\left( {1 – \frac{1}{x}} \right)\sum\limits_{n = 1}^\infty {\frac{
{
{x^{n + 1}}}}{
{\left( {1 – {x^n}} \right)\left( {1 – {x^{n + 1}}} \right)}}} \\=& \sum\limits_{n = 1}^\infty {\frac{
{
{x^{n + 1}}}}{
{\left( {1 – {x^n}} \right)\left( {1 – {x^{n + 1}}} \right)}}} – \sum\limits_{n = 1}^\infty {\frac{
{
{x^n}}}{
{\left( {1 – {x^n}} \right)\left( {1 – {x^{n + 1}}} \right)}}} \\= &\sum\limits_{n = 1}^\infty {\frac{
{
{x^{n + 1}} – {x^n}}}{
{\left( {1 – {x^n}} \right)\left( {1 – {x^{n + 1}}} \right)}}} = \sum\limits_{n = 1}^\infty {\left( {\frac{1}{
{1 – {x^{n + 1}}}} – \frac{1}{
{1 – {x^n}}}} \right)} \\=& \mathop {\lim }\limits_{n \to \infty } \frac{1}{
{1 – {x^{n + 1}}}} – \frac{1}{
{1 – x}} = \begin{cases}\frac{1}{
{x – 1}},&\left| x \right| > 1\\\frac{x}{
{x – 1}},&\left| x \right| < 1\end{cases} .\end{align*}$$

因此
\[\sum\limits_{n = 1}^\infty {\frac{
{
{x^{n + 1}}}}{
{\left( {1 – {x^n}} \right)\left( {1 – {x^{n + 1}}} \right)}}} = \begin{cases}\frac{x}{
{
{
{\left( {x – 1} \right)}^2}}}, &\left| x \right| > 1\\\frac{
{
{x^2}}}{
{
{
{\left( {x – 1} \right)}^2}}}, &\left| x \right| < 1\end{cases} .\]

15.设 $ \sum\limits_{n = 1}^\infty {\frac{1}{
{
{a_n}}}} $ 为发散的正项级数, $ x>0 $ ,求 $ \sum\limits_{n = 1}^\infty {\frac{
{
{a_1}{a_2} \cdots {a_n}}}{
{\left( {
{a_2} + x} \right) \cdots \left( {
{a_{n + 1}} + x} \right)}}} $ 的和函数.

解:首先,
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\frac{
{
{a_1}{a_2} \cdots {a_n}}}{
{\left( {
{a_2} + x} \right) \cdots \left( {
{a_{n + 1}} + x} \right)}}} \\=& \frac{
{
{a_1}}}{
{
{a_2} + x}} + \frac{1}{x}\sum\limits_{n = 2}^\infty {\left[ {\frac{
{
{a_1}{a_2} \cdots {a_n}}}{
{\left( {
{a_2} + x} \right) \cdots \left( {
{a_n} + x} \right)}} – \frac{
{
{a_1}{a_2} \cdots {a_{n + 1}}}}{
{\left( {
{a_2} + x} \right) \cdots \left( {
{a_{n + 1}} + x} \right)}}} \right]} \\=& \frac{
{
{a_1}}}{
{
{a_2} + x}} + \frac{1}{x}\left[ {\frac{
{
{a_1}{a_2}}}{
{
{a_2} + x}} – \mathop {\lim }\limits_{n \to \infty } \frac{
{
{a_1}{a_2} \cdots {a_{n + 1}}}}{
{\left( {
{a_2} + x} \right) \cdots \left( {
{a_{n + 1}} + x} \right)}}} \right].\end{align*}$$

当 $ n $ 足够大时,\[1 + \frac{x}{
{
{a_{n + 1}}}} \sim {e^{x/{a_{n + 1}}}}.\]

因此 $ {\left( {1 + \frac{x}{
{
{a_2}}}} \right) \cdots \left( {1 + \frac{x}{
{
{a_{n + 1}}}}} \right)} $ 与 $ \exp \left\{ {x\sum\limits_{n = 1}^\infty {\frac{1}{
{
{a_n}}}} } \right\} $ 具有相同的收敛性,均发散,故

\[\mathop {\lim }\limits_{n \to \infty } \frac{
{
{a_1}{a_2} \cdots {a_{n + 1}}}}{
{\left( {
{a_2} + x} \right) \cdots \left( {
{a_{n + 1}} + x} \right)}} = \mathop {\lim }\limits_{n \to \infty } \frac{
{
{a_1}}}{
{\left( {1 + \frac{x}{
{
{a_2}}}} \right) \cdots \left( {1 + \frac{x}{
{
{a_{n + 1}}}}} \right)}} = 0.\]

从而
\[\sum\limits_{n = 1}^\infty {\frac{
{
{a_1}{a_2} \cdots {a_n}}}{
{\left( {
{a_2} + x} \right) \cdots \left( {
{a_{n + 1}} + x} \right)}}} = \frac{
{
{a_1}}}{
{
{a_2} + x}} + \frac{
{
{a_1}{a_2}}}{
{x\left( {
{a_2} + x} \right)}} = \frac{
{
{a_1}}}{x}.\]

16.设 $ x>1 $ ,求 $ \frac{x}{
{x + 1}} + \frac{
{
{x^2}}}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)}} + \frac{
{
{x^4}}}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)\left( {
{x^4} + 1} \right)}} + \cdots $ 的和函数.

解:$$\begin{align*}I &= \left( {1 – \frac{1}{
{x + 1}}} \right) + \frac{
{
{x^2}}}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)}} + \frac{
{
{x^4}}}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)\left( {
{x^4} + 1} \right)}} + \cdots \\&= 1 + \left( { – \frac{1}{
{x + 1}} + \frac{
{
{x^2}}}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)}}} \right) + \frac{
{
{x^4}}}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)\left( {
{x^4} + 1} \right)}} + \cdots \\&= 1 – \frac{1}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)}} + \frac{
{
{x^4}}}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)\left( {
{x^4} + 1} \right)}} + \cdots \\&= 1 – \frac{1}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)\left( {
{x^4} + 1} \right)}} + \cdots \\&= \cdots = 1 – \mathop {\lim }\limits_{n \to \infty } \frac{1}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right) \cdots \left( {
{x^{
{2^{n – 1}}}} + 1} \right)}} = 1.\end{align*}$$ 

 

源自: http://www.math.org.cn/forum.php?mod=viewthread&tid=35174 [未验证其正确性, 仅供参考]

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/109316.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • jsonpath 判断是否包含_JSONPath介绍

    jsonpath 判断是否包含_JSONPath介绍/***@authoritguang*@create2017-12-1010:03**/@RunWith(SpringRunner.class)@SpringBootTest@Slf4jpublicclassJSONpathControllerTest{@Testpublicvoidtest(){Useruser=newUser(“itguang”,”123456″…

    2022年6月22日
    102
  • 基于C#的WinForm窗体美化(无须美工功底)「建议收藏」

    基于C#的WinForm窗体美化(无须美工功底)「建议收藏」基于C#的WinForm窗体美化(无须美工功底)在近期的实训中,学习到了许多精髓的小知识。接下来我会发布几篇博客,分享我的开发经验。在设计面向对象的UI层界面时,常常因为WinForm自身的窗体界面不够美观而去反复修改各种控件的位置。当然在不同的Windos中,WinForm所具有的主题也是不同的,但对于颜控的我们,这些也是无法满足的。所以今天我分享一个关于简单的对窗体进行美化的一个小技巧。

    2022年5月28日
    40
  • Java线程池-ThreadPoolExecutor原理分析与实战

    Java线程池-ThreadPoolExecutor原理分析与实战1.为什么要用线程池减少资源的开销  减少了每次创建线程、销毁线程的开销。 提高响应速度,每次请求到来时,由于线程的创建已经完成,故可以直接执行任务,因此提高了响应速度。 提高线程的可管理性,线程是一种稀缺资源,若不加以限制,不仅会占用大量资源,而且会影响系统的稳定性。 因此,线程池可以对线程的创建与停止、线程数量等等因素加以控制,使得线程在一种可控的范围内运行,不仅能保证系统稳定…

    2022年7月13日
    19
  • BS架构和CS架构的区别

    BS架构和CS架构的区别介绍BS:(Browser/Server,浏览器/服务器模式),web应用可以实现跨平台,客户端零维护,但是个性化能力低,响应速度较慢。CS:(Client/Server,客户端/服务器模式),桌面级应用响应速度快,安全性强,个性化能力强,响应数据较快区别硬件环境不同C/S用户固定,一般只应用于局域网中,要求拥有相同的操作系统,如果对于不同操作系统还要相应开发不同的版本,并且对…

    2022年6月15日
    33
  • viewstate解密

    viewstate解密看完之后,觉得能不用viewstate就不用,再者像这样viewstate[“a”]=”b”;这种简单的赋值是没有什么关系的,它生成的树是很小的,altas一定是用js修改了viewstate的,但方法肯定是加密再加密的,效率也应该很低. ViewState是.Net中提出的状态保存的一种新途径(实际上也是老瓶装新酒);我们知道,传统的Web程序保存状态的方式有这样几种: 1、Appli

    2022年7月21日
    25
  • 微信自动添加好友软件打包下载

    微信自动添加好友软件打包下载

    2021年9月17日
    102

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号