谢惠民,恽自求,易法槐,钱定边编数学分析习题课讲义16.2.3练习题参考解答[来自陶哲轩小弟]…

谢惠民,恽自求,易法槐,钱定边编数学分析习题课讲义16.2.3练习题参考解答[来自陶哲轩小弟]…

1.设已知 $ \sum\limits_{n = 1}^\infty {
{
{\left( { – 1} \right)}^{n – 1}}{a_n}} = A,\sum\limits_{n = 1}^\infty {
{a_{2n – 1}}} = B $ ,证明: $ \sum\limits_{n = 1}^\infty {
{a_n}} $ 收敛并求其和.

解:显然有
\[\sum\limits_{n = 1}^\infty {
{a_n}} = 2\sum\limits_{n = 1}^\infty {
{a_{2n – 1}}} – \sum\limits_{n = 1}^\infty {
{
{\left( { – 1} \right)}^{n – 1}}{a_n}} = 2B – A.\]

2.设 $ P(x)=a_0+a_1x+\cdots+a_mx^m $ 为 $ m $ 次多项式,求级数 $ \sum\limits_{n = 0}^\infty {\frac{
{P\left( n \right)}}{
{n!}}} $ 的和.

解:事实上,
$$\begin{align*}{b_k} &= \sum\limits_{n = 0}^\infty {\frac{
{
{n^k}}}{
{n!}}} = \sum\limits_{n = 1}^\infty {\frac{
{
{n^{k – 1}}}}{
{\left( {n – 1} \right)!}}} = \sum\limits_{n = 0}^\infty {\frac{
{
{
{\left( {n + 1} \right)}^{k – 1}}}}{
{n!}}} \\&= {b_{k – 1}} + C_{k – 1}^1{b_{k – 2}} + \cdots + C_{k – 1}^{k – 2}{b_1} + {b_0},\end{align*}$$

其中 $ b_0=e $ .
由此得到的数叫Bell数,记为 $ B_n $ ,并且
\[B\left( x \right) = \sum\limits_{n = 0}^\infty {\frac{
{B\left( n \right)}}{
{n!}}{x^n}} = {e^{
{e^x} – 1}}.\]

回到原题,我们有\[\sum\limits_{n = 0}^\infty {\frac{
{P\left( n \right)}}{
{n!}}} = e\sum\limits_{k = 0}^m {
{a_k}{B_k}} .\]

3.求 $ 1 – \frac{
{
{2^3}}}{
{1!}} + \frac{
{
{3^3}}}{
{2!}} – \frac{
{
{4^3}}}{
{3!}} + \cdots $ 的和.

解:事实上,
$$\begin{align*}{b_k} &= \sum\limits_{n = 0}^\infty {
{
{\left( { – 1} \right)}^n}\frac{
{
{n^k}}}{
{n!}}} = \sum\limits_{n = 1}^\infty {
{
{\left( { – 1} \right)}^n}\frac{
{
{n^{k – 1}}}}{
{\left( {n – 1} \right)!}}} = \sum\limits_{n = 0}^\infty {
{
{\left( { – 1} \right)}^{n+1}}\frac{
{
{
{\left( {n + 1} \right)}^{k – 1}}}}{
{n!}}} \\& =- {b_{k – 1}} – C_{k – 1}^1{b_{k – 2}} – \cdots – C_{k – 1}^{k – 2}{b_1} – {b_0},\end{align*}$$

其中 $ b_0=1/e $ .因此 $ b_1=-1/e,b_2=0,b_3=1/e $ .

因此
$$\begin{align*}& 1 – \frac{
{
{2^3}}}{
{1!}} + \frac{
{
{3^3}}}{
{2!}} – \frac{
{
{4^3}}}{
{3!}} + \cdots = \sum\limits_{n = 0}^\infty {
{
{\left( { – 1} \right)}^n}\frac{
{
{
{\left( {n + 1} \right)}^3}}}{
{n!}}} \\=& {b_3} + 3{b_2} + 3{b_1} + {b_0} = – \frac{1}{e}.\end{align*}$$

4.求下列级数的和:(1) $ \sum\limits_{n = 1}^\infty {\arctan \frac{1}{
{2{n^2}}}} $ ; (2) $ \sum\limits_{n = 1}^\infty {\arctan \frac{2}{
{
{n^2}}}} $ .

解:事实上
\[\sum\limits_{n = 1}^\infty {\arctan \frac{1}{
{2{n^2}}}} = \sum\limits_{n = 1}^\infty {\left( {\arctan \frac{1}{
{2n – 1}} – \arctan \frac{1}{
{2n + 1}}} \right)} = \frac{\pi }{4}.\]


\[\sum\limits_{n = 1}^\infty {\arctan \frac{2}{
{
{n^2}}}} = \sum\limits_{n = 1}^\infty {\left( {\arctan \frac{1}{
{n – 1}} – \arctan \frac{1}{
{n + 1}}} \right)} = \frac{\pi }{2} + \frac{\pi }{4} = \frac{
{3\pi }}{4}.\]

5.设 $ a>1 $ ,求 $ \sum\limits_{n = 0}^\infty {\frac{
{
{2^n}}}{
{
{a^{
{2^n}}} + 1}}} $ 的和.

解:事实上
$$\begin{align*}\sum\limits_{n = 0}^\infty {\frac{
{
{2^n}}}{
{
{a^{
{2^n}}} + 1}}} &= \frac{1}{
{a + 1}} + \sum\limits_{n = 1}^\infty {\frac{
{
{2^n}}}{
{
{a^{
{2^n}}} + 1}}} = \frac{1}{
{a + 1}} – \frac{1}{
{a – 1}} + \frac{1}{
{a + 1}} + \sum\limits_{n = 1}^\infty {\frac{
{
{2^n}}}{
{
{a^{
{2^n}}} + 1}}} \\&= \frac{1}{
{a + 1}} – \frac{2}{
{
{a^2} – 1}} + \sum\limits_{n = 1}^\infty {\frac{
{
{2^n}}}{
{
{a^{
{2^n}}} + 1}}} = \frac{1}{
{a + 1}} – \frac{
{
{2^2}}}{
{
{a^{
{2^2}}} – 1}} + \sum\limits_{n = 2}^\infty {\frac{
{
{2^n}}}{
{
{a^{
{2^n}}} + 1}}} \\&= \frac{1}{
{a + 1}} – \mathop {\lim }\limits_{n \to \infty } \frac{
{
{2^{n + 1}}}}{
{
{a^{
{2^{n + 1}}}} – 1}} = \frac{1}{
{a + 1}}.\end{align*}$$

6.求 $ 1 + \frac{1}{3} – \frac{1}{5} – \frac{1}{7} + \frac{1}{9} + \frac{1}{
{11}} – \cdots $ 的和.

解:
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\left( {\frac{1}{
{8n – 7}} + \frac{1}{
{8n – 5}} – \frac{1}{
{8n – 3}} – \frac{1}{
{8n – 1}}} \right)} = \sum\limits_{n = 1}^\infty {\int_0^1 {\left( {
{x^{8n – 8}} + {x^{8n – 6}} – {x^{8n – 4}} – {x^{8n – 2}}} \right)} } \\=& \int_0^1 {\sum\limits_{n = 1}^\infty {\left( {
{x^{8n – 8}} + {x^{8n – 6}} – {x^{8n – 4}} – {x^{8n – 2}}} \right)} dx} = \int_0^1 {\frac{
{1 + {x^2} – {x^4} – {x^6}}}{
{1 – {x^8}}}dx} \\= &\left. {\frac{
{\arctan \left( {1 + \sqrt 2 x} \right) – \arctan \left( {1 – \sqrt 2 x} \right)}}{
{\sqrt 2 }}} \right|_0^1 = \frac{\pi }{
{2\sqrt 2 }}.\end{align*}$$

7.求 $ 1 – \frac{1}{7} + \frac{1}{9} – \frac{1}{
{15}} + \cdots $ 的和.

解:
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\left( {\frac{1}{
{8n – 7}} – \frac{1}{
{8n – 1}}} \right)} = \sum\limits_{n = 1}^\infty {\int_0^1 {\left( {
{x^{8n – 8}} – {x^{8n – 2}}} \right)} } \\=& \int_0^1 {\sum\limits_{n = 1}^\infty {\left( {
{x^{8n – 8}} – {x^{8n – 2}}} \right)} dx} = \int_0^1 {\frac{
{1 – {x^6}}}{
{1 – {x^8}}}dx} \\= &\left. {\frac{
{2\arctan x + \sqrt 2 \arctan \left( {1 + \sqrt 2 x} \right) – \arctan \left( {1 – \sqrt 2 x} \right)}}{4}} \right|_0^1 = \frac{
{\sqrt 2 + 1}}{8}\pi .\end{align*}$$

8.求 $ 1 – \frac{1}{4} + \frac{1}{7} – \frac{1}{
{10}} + \cdots $ 的和.

解:
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\left( {\frac{1}{
{6n – 5}} – \frac{1}{
{6n – 2}}} \right)} = \sum\limits_{n = 1}^\infty {\int_0^1 {\left( {
{x^{6n – 6}} – {x^{6n – 3}}} \right)} } \\= &\int_0^1 {\sum\limits_{n = 1}^\infty {\left( {
{x^{6n – 6}} – {x^{6n – 3}}} \right)} dx} = \int_0^1 {\frac{
{1 – {x^3}}}{
{1 – {x^6}}}dx} = \int_0^1 {\frac{1}{
{1 + {x^3}}}dx} \\=& \left. {\left( { – \frac{1}{6}\ln \left( {
{x^2} – x + 1} \right) + \frac{1}{3}\ln \left( {x + 1} \right) + \frac{
{\arctan \frac{
{2x – 1}}{
{\sqrt 3 }}}}{
{\sqrt 3 }}} \right)} \right|_0^1 = \frac{
{\sqrt 3 \pi + 3\ln 2}}{9}.\end{align*}$$

9.设 $ {a_n} = 1 + \frac{1}{2} + \cdots + \frac{1}{n},n = 1,2, \cdots $ ,求 $ \sum\limits_{n = 1}^\infty {\frac{
{
{a_n}}}{
{n\left( {n + 1} \right)}}} $ 的和.

解:
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\frac{
{
{a_n}}}{
{n\left( {n + 1} \right)}}} = \sum\limits_{n = 1}^\infty {\frac{
{1 + \frac{1}{2} + \cdots + \frac{1}{n}}}{
{n\left( {n + 1} \right)}}} \\=&\sum\limits_{n = 1}^\infty {\left( {\frac{
{1 + \frac{1}{2} + \cdots + \frac{1}{n}}}{n} – \frac{
{1 + \frac{1}{2} + \cdots + \frac{1}{
{n + 1}}}}{
{n + 1}}} \right)} + \sum\limits_{n = 1}^\infty {\frac{1}{
{
{
{\left( {n + 1} \right)}^2}}}} \\= & 1 – \mathop {\lim }\limits_{n \to \infty } \frac{
{1 + \frac{1}{2} + \cdots + \frac{1}{
{n + 1}}}}{
{n + 1}} + \left( {\frac{
{
{\pi ^2}}}{6} – 1} \right) = \frac{
{
{\pi ^2}}}{6} – \mathop {\lim }\limits_{n \to \infty } \frac{
{\frac{1}{
{n + 2}}}}{1} = \frac{
{
{\pi ^2}}}{6}.\end{align*}$$

10.求 $ \sum\limits_{n = 0}^\infty {\left( {\frac{1}{
{4n + 1}} + \frac{1}{
{4n + 3}} – \frac{1}{
{2n + 2}}} \right)} $ 的和.

解:
$$\begin{align*}&\sum\limits_{n = 0}^\infty {\left( {\frac{1}{
{4n + 1}} + \frac{1}{
{4n + 3}} – \frac{1}{
{2n + 2}}} \right)} = \sum\limits_{n = 0}^\infty {\int_0^1 {\left( {
{x^{4n}} + {x^{4n + 2}} – {x^{2n + 1}}} \right)} } \\= &\int_0^1 {\sum\limits_{n = 0}^\infty {\left( {
{x^{4n}} + {x^{4n + 2}} – {x^{2n + 1}}} \right)} dx} = \int_0^1 {\left( {\frac{
{1 + {x^2}}}{
{1 – {x^4}}} – \frac{x}{
{1 – {x^2}}}} \right)dx} \\=& \int_0^1 {\frac{1}{
{1 + x}}dx} = \ln 2.\end{align*}$$

11.求 $ 1 – \frac{1}{4} + \frac{1}{6} – \frac{1}{9} + \frac{1}{
{11}} – \frac{1}{
{14}} + \cdots $ 的和.

解:
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\left( {\frac{1}{
{5n – 4}} – \frac{1}{
{5n – 1}}} \right)} = \sum\limits_{n = 1}^\infty {\int_0^1 {\left( {
{x^{5n – 5}} – {x^{5n – 2}}} \right)dx} } \\=& \int_0^1 {\sum\limits_{n = 1}^\infty {\left( {
{x^{5n – 5}} – {x^{5n – 2}}} \right)} dx} = \int_0^1 {\frac{
{1 – {x^3}}}{
{1 – {x^5}}}dx} \\= &\left. {\left( {\frac{
{\left( {5 – \sqrt 5 } \right)/10}}{
{
{x^2} + \frac{
{\sqrt 5 + 1}}{2}x + 1}} + \frac{
{\left( {5 + \sqrt 5 } \right)/10}}{
{
{x^2} + \frac{
{ – \sqrt 5 + 1}}{2}x + 1}}} \right)} \right|_0^1 = \frac{
{\sqrt {25 + 10\sqrt 5 }}}{
{25}}\pi .\end{align*}$$

12.求 $ \frac{
{
{x^3}}}{
{3!}} + \frac{
{
{x^9}}}{
{9!}} + \frac{
{
{x^{15}}}}{
{15!}} + \cdots $ 的和函数.

解:事实上,方程 $ \omega^3=1 $ 有三个根 $ 1,{ – \frac{1}{2} + \frac{
{\sqrt 3 i}}{2}},{ – \frac{1}{2} – \frac{
{\sqrt 3 i}}{2}} $ .利用 $ \sinh $ 便可得到所需函数

$$\begin{align*}&\frac{
{\sinh x + \sinh \left( { – \frac{1}{2} + \frac{
{\sqrt 3 i}}{2}} \right)x + \sinh \left( { – \frac{1}{2} – \frac{
{\sqrt 3 i}}{2}} \right)x}}{3}\\= & – \frac{2}{3}\sinh \frac{x}{2}\cos \frac{
{\sqrt 3 x}}{2} + \frac{
{\sinh x}}{3} = \frac{
{
{x^3}}}{
{3!}} + \frac{
{
{x^9}}}{
{9!}} + \frac{
{
{x^{15}}}}{
{15!}} + \cdots .\end{align*}$$

我们还有

$$\begin{align*}&{\frac{
{\sin x +\sin \left( { – \frac{1}{2} + \frac{
{\sqrt 3 i}}{2}} \right)x + \sin \left( { – \frac{1}{2} – \frac{
{\sqrt 3 i}}{2}} \right)x}}{
{ – 3}}}\\= &\frac{2}{3}\sin \frac{x}{2}\cosh \frac{
{\sqrt 3 x}}{2} – \frac{
{\sin x}}{3} = \frac{
{
{x^3}}}{
{3!}} – \frac{
{
{x^9}}}{
{9!}} + \frac{
{
{x^{15}}}}{
{15!}} – \frac{
{
{x^{21}}}}{
{21!}} + \cdots .\end{align*}$$

13.求 $ \sum\limits_{n = 1}^\infty {\frac{
{
{
{\left[ {\left( {n – 1} \right)!} \right]}^2}}}{
{\left( {2n} \right)!}}{
{\left( {2x} \right)}^{2n}}} $ 的和函数.

解:在 $ |x|<1 $ 上对 $ S(x) $ 逐项求导,知 $ S’\left( x \right) = 2\sum\limits_{n = 1}^\infty {\frac{
{
{
{\left[ {\left( {n – 1} \right)!} \right]}^2}}}{
{\left( {2n – 1} \right)!}}{
{\left( {2x} \right)}^{2n – 1}}} $ ,且 $ S”\left( x \right) = 4\sum\limits_{n = 1}^\infty {\frac{
{
{
{\left[ {\left( {n – 1} \right)!} \right]}^2}}}{
{\left( {2n – 2} \right)!}}{
{\left( {2x} \right)}^{2n – 2}}} $ .由此可得 $ (1-x^2)S”(x)-xS'(x)=4 $ .在两端乘以 $ {(1-x^2)}^{-1/2} $ ,我们有

\[{\left( {\sqrt {1 – {x^2}} S’\left( x \right)} \right)^\prime } = \frac{4}{
{\sqrt {1 – {x^2}} }},\]故

\[S\left( x \right) = \frac{
{4\arcsin x}}{
{\sqrt {1 – {x^2}} }} + \frac{1}{
{\sqrt {1 – {x^2}} }},\quad \left| x \right| < 1.\]

14.求 $ \sum\limits_{n = 1}^\infty {\frac{
{
{x^{n + 1}}}}{
{\left( {1 – {x^n}} \right)\left( {1 – {x^{n + 1}}} \right)}}} $ 的和函数.

解:注意到
$$\begin{align*}&\left( {1 – \frac{1}{x}} \right)\sum\limits_{n = 1}^\infty {\frac{
{
{x^{n + 1}}}}{
{\left( {1 – {x^n}} \right)\left( {1 – {x^{n + 1}}} \right)}}} \\=& \sum\limits_{n = 1}^\infty {\frac{
{
{x^{n + 1}}}}{
{\left( {1 – {x^n}} \right)\left( {1 – {x^{n + 1}}} \right)}}} – \sum\limits_{n = 1}^\infty {\frac{
{
{x^n}}}{
{\left( {1 – {x^n}} \right)\left( {1 – {x^{n + 1}}} \right)}}} \\= &\sum\limits_{n = 1}^\infty {\frac{
{
{x^{n + 1}} – {x^n}}}{
{\left( {1 – {x^n}} \right)\left( {1 – {x^{n + 1}}} \right)}}} = \sum\limits_{n = 1}^\infty {\left( {\frac{1}{
{1 – {x^{n + 1}}}} – \frac{1}{
{1 – {x^n}}}} \right)} \\=& \mathop {\lim }\limits_{n \to \infty } \frac{1}{
{1 – {x^{n + 1}}}} – \frac{1}{
{1 – x}} = \begin{cases}\frac{1}{
{x – 1}},&\left| x \right| > 1\\\frac{x}{
{x – 1}},&\left| x \right| < 1\end{cases} .\end{align*}$$

因此
\[\sum\limits_{n = 1}^\infty {\frac{
{
{x^{n + 1}}}}{
{\left( {1 – {x^n}} \right)\left( {1 – {x^{n + 1}}} \right)}}} = \begin{cases}\frac{x}{
{
{
{\left( {x – 1} \right)}^2}}}, &\left| x \right| > 1\\\frac{
{
{x^2}}}{
{
{
{\left( {x – 1} \right)}^2}}}, &\left| x \right| < 1\end{cases} .\]

15.设 $ \sum\limits_{n = 1}^\infty {\frac{1}{
{
{a_n}}}} $ 为发散的正项级数, $ x>0 $ ,求 $ \sum\limits_{n = 1}^\infty {\frac{
{
{a_1}{a_2} \cdots {a_n}}}{
{\left( {
{a_2} + x} \right) \cdots \left( {
{a_{n + 1}} + x} \right)}}} $ 的和函数.

解:首先,
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\frac{
{
{a_1}{a_2} \cdots {a_n}}}{
{\left( {
{a_2} + x} \right) \cdots \left( {
{a_{n + 1}} + x} \right)}}} \\=& \frac{
{
{a_1}}}{
{
{a_2} + x}} + \frac{1}{x}\sum\limits_{n = 2}^\infty {\left[ {\frac{
{
{a_1}{a_2} \cdots {a_n}}}{
{\left( {
{a_2} + x} \right) \cdots \left( {
{a_n} + x} \right)}} – \frac{
{
{a_1}{a_2} \cdots {a_{n + 1}}}}{
{\left( {
{a_2} + x} \right) \cdots \left( {
{a_{n + 1}} + x} \right)}}} \right]} \\=& \frac{
{
{a_1}}}{
{
{a_2} + x}} + \frac{1}{x}\left[ {\frac{
{
{a_1}{a_2}}}{
{
{a_2} + x}} – \mathop {\lim }\limits_{n \to \infty } \frac{
{
{a_1}{a_2} \cdots {a_{n + 1}}}}{
{\left( {
{a_2} + x} \right) \cdots \left( {
{a_{n + 1}} + x} \right)}}} \right].\end{align*}$$

当 $ n $ 足够大时,\[1 + \frac{x}{
{
{a_{n + 1}}}} \sim {e^{x/{a_{n + 1}}}}.\]

因此 $ {\left( {1 + \frac{x}{
{
{a_2}}}} \right) \cdots \left( {1 + \frac{x}{
{
{a_{n + 1}}}}} \right)} $ 与 $ \exp \left\{ {x\sum\limits_{n = 1}^\infty {\frac{1}{
{
{a_n}}}} } \right\} $ 具有相同的收敛性,均发散,故

\[\mathop {\lim }\limits_{n \to \infty } \frac{
{
{a_1}{a_2} \cdots {a_{n + 1}}}}{
{\left( {
{a_2} + x} \right) \cdots \left( {
{a_{n + 1}} + x} \right)}} = \mathop {\lim }\limits_{n \to \infty } \frac{
{
{a_1}}}{
{\left( {1 + \frac{x}{
{
{a_2}}}} \right) \cdots \left( {1 + \frac{x}{
{
{a_{n + 1}}}}} \right)}} = 0.\]

从而
\[\sum\limits_{n = 1}^\infty {\frac{
{
{a_1}{a_2} \cdots {a_n}}}{
{\left( {
{a_2} + x} \right) \cdots \left( {
{a_{n + 1}} + x} \right)}}} = \frac{
{
{a_1}}}{
{
{a_2} + x}} + \frac{
{
{a_1}{a_2}}}{
{x\left( {
{a_2} + x} \right)}} = \frac{
{
{a_1}}}{x}.\]

16.设 $ x>1 $ ,求 $ \frac{x}{
{x + 1}} + \frac{
{
{x^2}}}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)}} + \frac{
{
{x^4}}}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)\left( {
{x^4} + 1} \right)}} + \cdots $ 的和函数.

解:$$\begin{align*}I &= \left( {1 – \frac{1}{
{x + 1}}} \right) + \frac{
{
{x^2}}}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)}} + \frac{
{
{x^4}}}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)\left( {
{x^4} + 1} \right)}} + \cdots \\&= 1 + \left( { – \frac{1}{
{x + 1}} + \frac{
{
{x^2}}}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)}}} \right) + \frac{
{
{x^4}}}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)\left( {
{x^4} + 1} \right)}} + \cdots \\&= 1 – \frac{1}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)}} + \frac{
{
{x^4}}}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)\left( {
{x^4} + 1} \right)}} + \cdots \\&= 1 – \frac{1}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)\left( {
{x^4} + 1} \right)}} + \cdots \\&= \cdots = 1 – \mathop {\lim }\limits_{n \to \infty } \frac{1}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right) \cdots \left( {
{x^{
{2^{n – 1}}}} + 1} \right)}} = 1.\end{align*}$$ 

 

源自: http://www.math.org.cn/forum.php?mod=viewthread&tid=35174 [未验证其正确性, 仅供参考]

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/109316.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • long long转string代码

    long long转string代码stringlltoString(longlongtimestamp){stringresult;ostringstreamss;ss<<timestamp;istringstreamis(ss.str());is>>result;returnresult;}包含头文件:#include…

    2022年5月14日
    37
  • 农林业遥感图像分类研究[通俗易懂]

    农林业遥感图像分类研究[通俗易懂]遥感图像处理是数字图像处理技术中的一个重要组成部分,长期以来被广泛应用于农林业的遥感测绘,防灾减灾等领域。本文旨在通过深度学习技术从遥感影像中分类出农田和林业地块。手工从遥感图像中分类出农田和林业区域分类虽然准确但是效率低下,并且很多采用传统图像分割技术的方法泛化性能差,不适合场景复杂的遥感图像。经实践证明,使用深度学习技术在各种计算机视觉任务中都取得了良好的效果,因此本文首先使用先进的深度学习框…

    2022年9月25日
    0
  • 微信小程序轮播图实现 含小圆点 图片下方显示标题

    微信小程序轮播图实现 含小圆点 图片下方显示标题实现结果html代码<viewclass=”lb”><swiperindicator-dots=”true”autoplay=”true”interval=”3000″current=”0″circular=”true”style=”width:100%;”><swiper-item><imagesrc=”../image/im1.jpg

    2022年5月11日
    42
  • 游戏开发怎么做(游戏开发流程详解)

    本文来自作者goto先生在GitChat上分享「如何开发一款游戏:游戏开发流程及所需工具」,「阅读原文」查看交流实录。「文末高能」编辑|哈比游戏作为娱乐生活的一个方面,参与其中的人越来越多,而大部分参与其中的人都是以玩家的身份。他们热爱一款游戏,或是被游戏的故事情节、炫丽的场景、动听的音乐所艳羡,亦或是被游戏中角色扮演、炫酷的技能、有趣的任务所吸引,然而他们中的大多数可能并不了解如此

    2022年4月17日
    61
  • OpenCV基础——IplImage中的widthStep

    OpenCV基础——IplImage中的widthStepIplImage有两个属性容易导致错误:width和widthStep前者是表示图像的每行像素数,后者指表示存储一行像素需要的字节数。在OpenCV里边,widthStep必须是4的倍数,从而实现字节对齐,有利于提高运算速度。如果8U单通道图像宽度为3,那么widthStep是4,加一个字节补齐。这个图像的一行需要4个字节,只使用前3个,最后一个空着。也就是一个宽3高3的图像的…

    2022年6月11日
    28
  • Keil系列教程(汇总)「建议收藏」

    Keil系列教程(汇总)「建议收藏」推荐分享一个大神的人工智能教程。零基础!通俗易懂!风趣幽默!还带黄段子!希望你也加入到人工智能的队伍中来!http://www.captainbed.net/strongerhuang我的网站:https://www.strongerhuang.com我的知乎:https://www.zhihu.com/people/strongerHuang.com推荐在我公众…

    2022年5月24日
    34

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号