谢惠民,恽自求,易法槐,钱定边编数学分析习题课讲义16.2.3练习题参考解答[来自陶哲轩小弟]…

谢惠民,恽自求,易法槐,钱定边编数学分析习题课讲义16.2.3练习题参考解答[来自陶哲轩小弟]…

1.设已知 $ \sum\limits_{n = 1}^\infty {
{
{\left( { – 1} \right)}^{n – 1}}{a_n}} = A,\sum\limits_{n = 1}^\infty {
{a_{2n – 1}}} = B $ ,证明: $ \sum\limits_{n = 1}^\infty {
{a_n}} $ 收敛并求其和.

解:显然有
\[\sum\limits_{n = 1}^\infty {
{a_n}} = 2\sum\limits_{n = 1}^\infty {
{a_{2n – 1}}} – \sum\limits_{n = 1}^\infty {
{
{\left( { – 1} \right)}^{n – 1}}{a_n}} = 2B – A.\]

2.设 $ P(x)=a_0+a_1x+\cdots+a_mx^m $ 为 $ m $ 次多项式,求级数 $ \sum\limits_{n = 0}^\infty {\frac{
{P\left( n \right)}}{
{n!}}} $ 的和.

解:事实上,
$$\begin{align*}{b_k} &= \sum\limits_{n = 0}^\infty {\frac{
{
{n^k}}}{
{n!}}} = \sum\limits_{n = 1}^\infty {\frac{
{
{n^{k – 1}}}}{
{\left( {n – 1} \right)!}}} = \sum\limits_{n = 0}^\infty {\frac{
{
{
{\left( {n + 1} \right)}^{k – 1}}}}{
{n!}}} \\&= {b_{k – 1}} + C_{k – 1}^1{b_{k – 2}} + \cdots + C_{k – 1}^{k – 2}{b_1} + {b_0},\end{align*}$$

其中 $ b_0=e $ .
由此得到的数叫Bell数,记为 $ B_n $ ,并且
\[B\left( x \right) = \sum\limits_{n = 0}^\infty {\frac{
{B\left( n \right)}}{
{n!}}{x^n}} = {e^{
{e^x} – 1}}.\]

回到原题,我们有\[\sum\limits_{n = 0}^\infty {\frac{
{P\left( n \right)}}{
{n!}}} = e\sum\limits_{k = 0}^m {
{a_k}{B_k}} .\]

3.求 $ 1 – \frac{
{
{2^3}}}{
{1!}} + \frac{
{
{3^3}}}{
{2!}} – \frac{
{
{4^3}}}{
{3!}} + \cdots $ 的和.

解:事实上,
$$\begin{align*}{b_k} &= \sum\limits_{n = 0}^\infty {
{
{\left( { – 1} \right)}^n}\frac{
{
{n^k}}}{
{n!}}} = \sum\limits_{n = 1}^\infty {
{
{\left( { – 1} \right)}^n}\frac{
{
{n^{k – 1}}}}{
{\left( {n – 1} \right)!}}} = \sum\limits_{n = 0}^\infty {
{
{\left( { – 1} \right)}^{n+1}}\frac{
{
{
{\left( {n + 1} \right)}^{k – 1}}}}{
{n!}}} \\& =- {b_{k – 1}} – C_{k – 1}^1{b_{k – 2}} – \cdots – C_{k – 1}^{k – 2}{b_1} – {b_0},\end{align*}$$

其中 $ b_0=1/e $ .因此 $ b_1=-1/e,b_2=0,b_3=1/e $ .

因此
$$\begin{align*}& 1 – \frac{
{
{2^3}}}{
{1!}} + \frac{
{
{3^3}}}{
{2!}} – \frac{
{
{4^3}}}{
{3!}} + \cdots = \sum\limits_{n = 0}^\infty {
{
{\left( { – 1} \right)}^n}\frac{
{
{
{\left( {n + 1} \right)}^3}}}{
{n!}}} \\=& {b_3} + 3{b_2} + 3{b_1} + {b_0} = – \frac{1}{e}.\end{align*}$$

4.求下列级数的和:(1) $ \sum\limits_{n = 1}^\infty {\arctan \frac{1}{
{2{n^2}}}} $ ; (2) $ \sum\limits_{n = 1}^\infty {\arctan \frac{2}{
{
{n^2}}}} $ .

解:事实上
\[\sum\limits_{n = 1}^\infty {\arctan \frac{1}{
{2{n^2}}}} = \sum\limits_{n = 1}^\infty {\left( {\arctan \frac{1}{
{2n – 1}} – \arctan \frac{1}{
{2n + 1}}} \right)} = \frac{\pi }{4}.\]


\[\sum\limits_{n = 1}^\infty {\arctan \frac{2}{
{
{n^2}}}} = \sum\limits_{n = 1}^\infty {\left( {\arctan \frac{1}{
{n – 1}} – \arctan \frac{1}{
{n + 1}}} \right)} = \frac{\pi }{2} + \frac{\pi }{4} = \frac{
{3\pi }}{4}.\]

5.设 $ a>1 $ ,求 $ \sum\limits_{n = 0}^\infty {\frac{
{
{2^n}}}{
{
{a^{
{2^n}}} + 1}}} $ 的和.

解:事实上
$$\begin{align*}\sum\limits_{n = 0}^\infty {\frac{
{
{2^n}}}{
{
{a^{
{2^n}}} + 1}}} &= \frac{1}{
{a + 1}} + \sum\limits_{n = 1}^\infty {\frac{
{
{2^n}}}{
{
{a^{
{2^n}}} + 1}}} = \frac{1}{
{a + 1}} – \frac{1}{
{a – 1}} + \frac{1}{
{a + 1}} + \sum\limits_{n = 1}^\infty {\frac{
{
{2^n}}}{
{
{a^{
{2^n}}} + 1}}} \\&= \frac{1}{
{a + 1}} – \frac{2}{
{
{a^2} – 1}} + \sum\limits_{n = 1}^\infty {\frac{
{
{2^n}}}{
{
{a^{
{2^n}}} + 1}}} = \frac{1}{
{a + 1}} – \frac{
{
{2^2}}}{
{
{a^{
{2^2}}} – 1}} + \sum\limits_{n = 2}^\infty {\frac{
{
{2^n}}}{
{
{a^{
{2^n}}} + 1}}} \\&= \frac{1}{
{a + 1}} – \mathop {\lim }\limits_{n \to \infty } \frac{
{
{2^{n + 1}}}}{
{
{a^{
{2^{n + 1}}}} – 1}} = \frac{1}{
{a + 1}}.\end{align*}$$

6.求 $ 1 + \frac{1}{3} – \frac{1}{5} – \frac{1}{7} + \frac{1}{9} + \frac{1}{
{11}} – \cdots $ 的和.

解:
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\left( {\frac{1}{
{8n – 7}} + \frac{1}{
{8n – 5}} – \frac{1}{
{8n – 3}} – \frac{1}{
{8n – 1}}} \right)} = \sum\limits_{n = 1}^\infty {\int_0^1 {\left( {
{x^{8n – 8}} + {x^{8n – 6}} – {x^{8n – 4}} – {x^{8n – 2}}} \right)} } \\=& \int_0^1 {\sum\limits_{n = 1}^\infty {\left( {
{x^{8n – 8}} + {x^{8n – 6}} – {x^{8n – 4}} – {x^{8n – 2}}} \right)} dx} = \int_0^1 {\frac{
{1 + {x^2} – {x^4} – {x^6}}}{
{1 – {x^8}}}dx} \\= &\left. {\frac{
{\arctan \left( {1 + \sqrt 2 x} \right) – \arctan \left( {1 – \sqrt 2 x} \right)}}{
{\sqrt 2 }}} \right|_0^1 = \frac{\pi }{
{2\sqrt 2 }}.\end{align*}$$

7.求 $ 1 – \frac{1}{7} + \frac{1}{9} – \frac{1}{
{15}} + \cdots $ 的和.

解:
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\left( {\frac{1}{
{8n – 7}} – \frac{1}{
{8n – 1}}} \right)} = \sum\limits_{n = 1}^\infty {\int_0^1 {\left( {
{x^{8n – 8}} – {x^{8n – 2}}} \right)} } \\=& \int_0^1 {\sum\limits_{n = 1}^\infty {\left( {
{x^{8n – 8}} – {x^{8n – 2}}} \right)} dx} = \int_0^1 {\frac{
{1 – {x^6}}}{
{1 – {x^8}}}dx} \\= &\left. {\frac{
{2\arctan x + \sqrt 2 \arctan \left( {1 + \sqrt 2 x} \right) – \arctan \left( {1 – \sqrt 2 x} \right)}}{4}} \right|_0^1 = \frac{
{\sqrt 2 + 1}}{8}\pi .\end{align*}$$

8.求 $ 1 – \frac{1}{4} + \frac{1}{7} – \frac{1}{
{10}} + \cdots $ 的和.

解:
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\left( {\frac{1}{
{6n – 5}} – \frac{1}{
{6n – 2}}} \right)} = \sum\limits_{n = 1}^\infty {\int_0^1 {\left( {
{x^{6n – 6}} – {x^{6n – 3}}} \right)} } \\= &\int_0^1 {\sum\limits_{n = 1}^\infty {\left( {
{x^{6n – 6}} – {x^{6n – 3}}} \right)} dx} = \int_0^1 {\frac{
{1 – {x^3}}}{
{1 – {x^6}}}dx} = \int_0^1 {\frac{1}{
{1 + {x^3}}}dx} \\=& \left. {\left( { – \frac{1}{6}\ln \left( {
{x^2} – x + 1} \right) + \frac{1}{3}\ln \left( {x + 1} \right) + \frac{
{\arctan \frac{
{2x – 1}}{
{\sqrt 3 }}}}{
{\sqrt 3 }}} \right)} \right|_0^1 = \frac{
{\sqrt 3 \pi + 3\ln 2}}{9}.\end{align*}$$

9.设 $ {a_n} = 1 + \frac{1}{2} + \cdots + \frac{1}{n},n = 1,2, \cdots $ ,求 $ \sum\limits_{n = 1}^\infty {\frac{
{
{a_n}}}{
{n\left( {n + 1} \right)}}} $ 的和.

解:
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\frac{
{
{a_n}}}{
{n\left( {n + 1} \right)}}} = \sum\limits_{n = 1}^\infty {\frac{
{1 + \frac{1}{2} + \cdots + \frac{1}{n}}}{
{n\left( {n + 1} \right)}}} \\=&\sum\limits_{n = 1}^\infty {\left( {\frac{
{1 + \frac{1}{2} + \cdots + \frac{1}{n}}}{n} – \frac{
{1 + \frac{1}{2} + \cdots + \frac{1}{
{n + 1}}}}{
{n + 1}}} \right)} + \sum\limits_{n = 1}^\infty {\frac{1}{
{
{
{\left( {n + 1} \right)}^2}}}} \\= & 1 – \mathop {\lim }\limits_{n \to \infty } \frac{
{1 + \frac{1}{2} + \cdots + \frac{1}{
{n + 1}}}}{
{n + 1}} + \left( {\frac{
{
{\pi ^2}}}{6} – 1} \right) = \frac{
{
{\pi ^2}}}{6} – \mathop {\lim }\limits_{n \to \infty } \frac{
{\frac{1}{
{n + 2}}}}{1} = \frac{
{
{\pi ^2}}}{6}.\end{align*}$$

10.求 $ \sum\limits_{n = 0}^\infty {\left( {\frac{1}{
{4n + 1}} + \frac{1}{
{4n + 3}} – \frac{1}{
{2n + 2}}} \right)} $ 的和.

解:
$$\begin{align*}&\sum\limits_{n = 0}^\infty {\left( {\frac{1}{
{4n + 1}} + \frac{1}{
{4n + 3}} – \frac{1}{
{2n + 2}}} \right)} = \sum\limits_{n = 0}^\infty {\int_0^1 {\left( {
{x^{4n}} + {x^{4n + 2}} – {x^{2n + 1}}} \right)} } \\= &\int_0^1 {\sum\limits_{n = 0}^\infty {\left( {
{x^{4n}} + {x^{4n + 2}} – {x^{2n + 1}}} \right)} dx} = \int_0^1 {\left( {\frac{
{1 + {x^2}}}{
{1 – {x^4}}} – \frac{x}{
{1 – {x^2}}}} \right)dx} \\=& \int_0^1 {\frac{1}{
{1 + x}}dx} = \ln 2.\end{align*}$$

11.求 $ 1 – \frac{1}{4} + \frac{1}{6} – \frac{1}{9} + \frac{1}{
{11}} – \frac{1}{
{14}} + \cdots $ 的和.

解:
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\left( {\frac{1}{
{5n – 4}} – \frac{1}{
{5n – 1}}} \right)} = \sum\limits_{n = 1}^\infty {\int_0^1 {\left( {
{x^{5n – 5}} – {x^{5n – 2}}} \right)dx} } \\=& \int_0^1 {\sum\limits_{n = 1}^\infty {\left( {
{x^{5n – 5}} – {x^{5n – 2}}} \right)} dx} = \int_0^1 {\frac{
{1 – {x^3}}}{
{1 – {x^5}}}dx} \\= &\left. {\left( {\frac{
{\left( {5 – \sqrt 5 } \right)/10}}{
{
{x^2} + \frac{
{\sqrt 5 + 1}}{2}x + 1}} + \frac{
{\left( {5 + \sqrt 5 } \right)/10}}{
{
{x^2} + \frac{
{ – \sqrt 5 + 1}}{2}x + 1}}} \right)} \right|_0^1 = \frac{
{\sqrt {25 + 10\sqrt 5 }}}{
{25}}\pi .\end{align*}$$

12.求 $ \frac{
{
{x^3}}}{
{3!}} + \frac{
{
{x^9}}}{
{9!}} + \frac{
{
{x^{15}}}}{
{15!}} + \cdots $ 的和函数.

解:事实上,方程 $ \omega^3=1 $ 有三个根 $ 1,{ – \frac{1}{2} + \frac{
{\sqrt 3 i}}{2}},{ – \frac{1}{2} – \frac{
{\sqrt 3 i}}{2}} $ .利用 $ \sinh $ 便可得到所需函数

$$\begin{align*}&\frac{
{\sinh x + \sinh \left( { – \frac{1}{2} + \frac{
{\sqrt 3 i}}{2}} \right)x + \sinh \left( { – \frac{1}{2} – \frac{
{\sqrt 3 i}}{2}} \right)x}}{3}\\= & – \frac{2}{3}\sinh \frac{x}{2}\cos \frac{
{\sqrt 3 x}}{2} + \frac{
{\sinh x}}{3} = \frac{
{
{x^3}}}{
{3!}} + \frac{
{
{x^9}}}{
{9!}} + \frac{
{
{x^{15}}}}{
{15!}} + \cdots .\end{align*}$$

我们还有

$$\begin{align*}&{\frac{
{\sin x +\sin \left( { – \frac{1}{2} + \frac{
{\sqrt 3 i}}{2}} \right)x + \sin \left( { – \frac{1}{2} – \frac{
{\sqrt 3 i}}{2}} \right)x}}{
{ – 3}}}\\= &\frac{2}{3}\sin \frac{x}{2}\cosh \frac{
{\sqrt 3 x}}{2} – \frac{
{\sin x}}{3} = \frac{
{
{x^3}}}{
{3!}} – \frac{
{
{x^9}}}{
{9!}} + \frac{
{
{x^{15}}}}{
{15!}} – \frac{
{
{x^{21}}}}{
{21!}} + \cdots .\end{align*}$$

13.求 $ \sum\limits_{n = 1}^\infty {\frac{
{
{
{\left[ {\left( {n – 1} \right)!} \right]}^2}}}{
{\left( {2n} \right)!}}{
{\left( {2x} \right)}^{2n}}} $ 的和函数.

解:在 $ |x|<1 $ 上对 $ S(x) $ 逐项求导,知 $ S’\left( x \right) = 2\sum\limits_{n = 1}^\infty {\frac{
{
{
{\left[ {\left( {n – 1} \right)!} \right]}^2}}}{
{\left( {2n – 1} \right)!}}{
{\left( {2x} \right)}^{2n – 1}}} $ ,且 $ S”\left( x \right) = 4\sum\limits_{n = 1}^\infty {\frac{
{
{
{\left[ {\left( {n – 1} \right)!} \right]}^2}}}{
{\left( {2n – 2} \right)!}}{
{\left( {2x} \right)}^{2n – 2}}} $ .由此可得 $ (1-x^2)S”(x)-xS'(x)=4 $ .在两端乘以 $ {(1-x^2)}^{-1/2} $ ,我们有

\[{\left( {\sqrt {1 – {x^2}} S’\left( x \right)} \right)^\prime } = \frac{4}{
{\sqrt {1 – {x^2}} }},\]故

\[S\left( x \right) = \frac{
{4\arcsin x}}{
{\sqrt {1 – {x^2}} }} + \frac{1}{
{\sqrt {1 – {x^2}} }},\quad \left| x \right| < 1.\]

14.求 $ \sum\limits_{n = 1}^\infty {\frac{
{
{x^{n + 1}}}}{
{\left( {1 – {x^n}} \right)\left( {1 – {x^{n + 1}}} \right)}}} $ 的和函数.

解:注意到
$$\begin{align*}&\left( {1 – \frac{1}{x}} \right)\sum\limits_{n = 1}^\infty {\frac{
{
{x^{n + 1}}}}{
{\left( {1 – {x^n}} \right)\left( {1 – {x^{n + 1}}} \right)}}} \\=& \sum\limits_{n = 1}^\infty {\frac{
{
{x^{n + 1}}}}{
{\left( {1 – {x^n}} \right)\left( {1 – {x^{n + 1}}} \right)}}} – \sum\limits_{n = 1}^\infty {\frac{
{
{x^n}}}{
{\left( {1 – {x^n}} \right)\left( {1 – {x^{n + 1}}} \right)}}} \\= &\sum\limits_{n = 1}^\infty {\frac{
{
{x^{n + 1}} – {x^n}}}{
{\left( {1 – {x^n}} \right)\left( {1 – {x^{n + 1}}} \right)}}} = \sum\limits_{n = 1}^\infty {\left( {\frac{1}{
{1 – {x^{n + 1}}}} – \frac{1}{
{1 – {x^n}}}} \right)} \\=& \mathop {\lim }\limits_{n \to \infty } \frac{1}{
{1 – {x^{n + 1}}}} – \frac{1}{
{1 – x}} = \begin{cases}\frac{1}{
{x – 1}},&\left| x \right| > 1\\\frac{x}{
{x – 1}},&\left| x \right| < 1\end{cases} .\end{align*}$$

因此
\[\sum\limits_{n = 1}^\infty {\frac{
{
{x^{n + 1}}}}{
{\left( {1 – {x^n}} \right)\left( {1 – {x^{n + 1}}} \right)}}} = \begin{cases}\frac{x}{
{
{
{\left( {x – 1} \right)}^2}}}, &\left| x \right| > 1\\\frac{
{
{x^2}}}{
{
{
{\left( {x – 1} \right)}^2}}}, &\left| x \right| < 1\end{cases} .\]

15.设 $ \sum\limits_{n = 1}^\infty {\frac{1}{
{
{a_n}}}} $ 为发散的正项级数, $ x>0 $ ,求 $ \sum\limits_{n = 1}^\infty {\frac{
{
{a_1}{a_2} \cdots {a_n}}}{
{\left( {
{a_2} + x} \right) \cdots \left( {
{a_{n + 1}} + x} \right)}}} $ 的和函数.

解:首先,
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\frac{
{
{a_1}{a_2} \cdots {a_n}}}{
{\left( {
{a_2} + x} \right) \cdots \left( {
{a_{n + 1}} + x} \right)}}} \\=& \frac{
{
{a_1}}}{
{
{a_2} + x}} + \frac{1}{x}\sum\limits_{n = 2}^\infty {\left[ {\frac{
{
{a_1}{a_2} \cdots {a_n}}}{
{\left( {
{a_2} + x} \right) \cdots \left( {
{a_n} + x} \right)}} – \frac{
{
{a_1}{a_2} \cdots {a_{n + 1}}}}{
{\left( {
{a_2} + x} \right) \cdots \left( {
{a_{n + 1}} + x} \right)}}} \right]} \\=& \frac{
{
{a_1}}}{
{
{a_2} + x}} + \frac{1}{x}\left[ {\frac{
{
{a_1}{a_2}}}{
{
{a_2} + x}} – \mathop {\lim }\limits_{n \to \infty } \frac{
{
{a_1}{a_2} \cdots {a_{n + 1}}}}{
{\left( {
{a_2} + x} \right) \cdots \left( {
{a_{n + 1}} + x} \right)}}} \right].\end{align*}$$

当 $ n $ 足够大时,\[1 + \frac{x}{
{
{a_{n + 1}}}} \sim {e^{x/{a_{n + 1}}}}.\]

因此 $ {\left( {1 + \frac{x}{
{
{a_2}}}} \right) \cdots \left( {1 + \frac{x}{
{
{a_{n + 1}}}}} \right)} $ 与 $ \exp \left\{ {x\sum\limits_{n = 1}^\infty {\frac{1}{
{
{a_n}}}} } \right\} $ 具有相同的收敛性,均发散,故

\[\mathop {\lim }\limits_{n \to \infty } \frac{
{
{a_1}{a_2} \cdots {a_{n + 1}}}}{
{\left( {
{a_2} + x} \right) \cdots \left( {
{a_{n + 1}} + x} \right)}} = \mathop {\lim }\limits_{n \to \infty } \frac{
{
{a_1}}}{
{\left( {1 + \frac{x}{
{
{a_2}}}} \right) \cdots \left( {1 + \frac{x}{
{
{a_{n + 1}}}}} \right)}} = 0.\]

从而
\[\sum\limits_{n = 1}^\infty {\frac{
{
{a_1}{a_2} \cdots {a_n}}}{
{\left( {
{a_2} + x} \right) \cdots \left( {
{a_{n + 1}} + x} \right)}}} = \frac{
{
{a_1}}}{
{
{a_2} + x}} + \frac{
{
{a_1}{a_2}}}{
{x\left( {
{a_2} + x} \right)}} = \frac{
{
{a_1}}}{x}.\]

16.设 $ x>1 $ ,求 $ \frac{x}{
{x + 1}} + \frac{
{
{x^2}}}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)}} + \frac{
{
{x^4}}}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)\left( {
{x^4} + 1} \right)}} + \cdots $ 的和函数.

解:$$\begin{align*}I &= \left( {1 – \frac{1}{
{x + 1}}} \right) + \frac{
{
{x^2}}}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)}} + \frac{
{
{x^4}}}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)\left( {
{x^4} + 1} \right)}} + \cdots \\&= 1 + \left( { – \frac{1}{
{x + 1}} + \frac{
{
{x^2}}}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)}}} \right) + \frac{
{
{x^4}}}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)\left( {
{x^4} + 1} \right)}} + \cdots \\&= 1 – \frac{1}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)}} + \frac{
{
{x^4}}}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)\left( {
{x^4} + 1} \right)}} + \cdots \\&= 1 – \frac{1}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right)\left( {
{x^4} + 1} \right)}} + \cdots \\&= \cdots = 1 – \mathop {\lim }\limits_{n \to \infty } \frac{1}{
{\left( {x + 1} \right)\left( {
{x^2} + 1} \right) \cdots \left( {
{x^{
{2^{n – 1}}}} + 1} \right)}} = 1.\end{align*}$$ 

 

源自: http://www.math.org.cn/forum.php?mod=viewthread&tid=35174 [未验证其正确性, 仅供参考]

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/109316.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • SAP Fiori refreshSecurityToken

    SAP Fiori refreshSecurityTokenCreatedbyWang,Jerry,lastmodifiedonMar26,2015要获取更多Jerry的原创文章,请关注公众号”汪子熙”:

    2025年7月11日
    4
  • crane:字典项与关联数据处理的新思路[通俗易懂]

    crane:字典项与关联数据处理的新思路[通俗易懂]前言在我们日常开发中,经常会遇到一些烦人的数据关联和转换问题,比如典型的:对象属性中个有字典id,需要获取对应字典值并填充到对象中;对象属性中有个外键,需要关联查询对应的数据库表实体,并获取其

    2022年8月16日
    7
  • bridge桥接模式_透明桥模式

    bridge桥接模式_透明桥模式bridge模式动机案例要点总结笔记动机由于某些类型的固有的实现逻辑,使得他们具有两个变化维度,乃至多个维度的变换如何应对这种”多维度的变化“?如何利用面向对象技术来是使得类型可以轻松地沿着两个乃至多个方向变换而不引入额外地复杂度?案例PC端和Mobile端平台和业务分离朴素class Messager{ public: virtual void Login(string username,string password) = 0; virtual void SendM

    2022年8月9日
    5
  • verilog调用vhdl模块_verilog和vhdl哪个更好

    verilog调用vhdl模块_verilog和vhdl哪个更好初学FPGA,记录一些个人的探索历程和心得。本文的初衷是为了验证VHDL和Verilog文件互相调用功能。以一个简单的二选一选择器为例,分别用两种方法实现功能。一、用Verilog文件调用VHDL以Verilog文件为顶层文件,调用VHDL模块,testbench为Verilog文件。1、新建project2、编写.vhd文件,FPGA_VHDL.vhd,文件名与模块名称一致;3、编写FPGA_Verilog.v文件,文件名与模块名称一致,且设为top文件。4、编写testbench文件

    2022年9月21日
    3
  • Tomcat8zip版本安装与配置[通俗易懂]

    Tomcat8zip版本安装与配置[通俗易懂]Tomcat8zip版本安装配置哈哈哈,又到了紧张刺激的每日必答:在开始之前呢,小Du来来带大家了解几个问题,希望能够在面试中,小Du的解答给你帮助。老样子,话不多说直接上图1.什么Tomcat:答:简单总结下,tomcat是一个中间件,在B/S架构中,浏览器发出的http请求经过tpmcat中间件,转发到最终的目的服务器上,响应消息再通过tomcat返回给浏览器。tomcat所做的事情主要有:开启监听端口监听用户的请求,解析用户发来的http请求然后访问到你指定的应用系统,然后你返回的页面经过t

    2022年6月12日
    26
  • hive的存储类型_4.2数据类型

    hive的存储类型_4.2数据类型了解Hive数据类型,是Hive编程的基础。使用hive建表,首先要明白hive常用的数据类型有哪些,可以存储哪些类型的数据。其实Hive支持关系型数据库中的大多数基本数据类型,且同时支持关系型数据库中少见的3种集合数类型(STRUCT,MAP,ARRAY)。然而学习技术最好的方式之一就是去查看官方文档。Hive关于数据类型官网地址:Hive官网关于数据类型的介绍…

    2022年9月21日
    1

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号