C#计算矩阵的秩

C#计算矩阵的秩

1.代码思路

计算矩阵的秩,即把矩阵进行行初等变换,得出的行最简矩阵的非零行数。过程如下

1)将矩阵各行按第一个非零元素出现的位置升序排列(Operation1函数)

2)查看矩阵是否为行最简矩阵(isFinished函数),是则到第6步,不是则到第3步

3)如果有两行第一个非零元素出现的位置相同,则做消法变换,让下面行的第一个非零元素位置后移(Operation2函数)

4)将矩阵各行按第一个非零元素出现的位置升序排列(Operation1函数)

5)返回第2步

6)判断误差,对趋近与0的元素(如1E-5)按0处理,以免在第7步误判(Operation3函数)

7)统计非零行的数目(Operation4函数),即为矩阵的秩

2.函数代码

(注:本段代码只实现了一个思路,可能并不是该问题的最优解)

/// <summary>
/// 计算矩阵的秩
/// </summary>
/// <param name="matrix">矩阵</param>
/// <returns></returns>
private static int Rank(double[][] matrix)
{
    //matrix为空则直接默认已经是最简形式
    if (matrix == null || matrix.Length == 0) return 0;

    //复制一个matrix到copy,之后因计算需要改动矩阵时并不改动matrix本身
    double[][] copy = new double[matrix.Length][];
    for (int i = 0; i < copy.Length; i++)
    {
        copy[i] = new double[matrix[i].Length];
    }
    for (int i = 0; i < matrix.Length; i++)
    {
        for (int j = 0; j < matrix[0].Length; j++)
        {
            copy[i][j] = matrix[i][j];
        }
    }

    //先以最左侧非零项的位置进行行排序
    Operation1(copy);

    //循环化简矩阵
    while (!isFinished(copy))
    {
        Operation2(copy);
        Operation1(copy);
    }

    //过于趋近0的项,视作0,减小误差
    Operation3(copy);

    //行最简矩阵的秩即为所求
    return Operation4(matrix);
}

/// <summary>
/// 判断矩阵是否变换到最简形式(非零行数达到最少)
/// </summary>
/// <param name="matrix"></param>
/// <returns>true:</returns>
private static bool isFinished(double[][] matrix)
{
    //统计每行第一个非零元素的出现位置
    int[] counter = new int[matrix.Length];
    for (int i = 0; i < matrix.Length; i++)
    {
        for (int j = 0; j < matrix[i].Length; j++)
        {
            if (matrix[i][j] == 0)
            {
                counter[i]++;
            }
            else break;
        }
    }

    //后面行的非零元素出现位置必须在前面行的后面,全零行除外
    for (int i = 1; i < counter.Length; i++)
    {
        if (counter[i] <= counter[i - 1] && counter[i] != matrix[0].Length)
        {
            return false;
        }
    }

    return true;
}

/// <summary>
/// 排序(按左侧最前非零位位置自上而下升序排列)
/// </summary>
/// <param name="matrix">矩阵</param>
private static void Operation1(double[][] matrix)
{
    //统计每行第一个非零元素的出现位置
    int[] counter = new int[matrix.Length];
    for (int i = 0; i < matrix.Length; i++)
    {
        for (int j = 0; j < matrix[i].Length; j++)
        {
            if (matrix[i][j] == 0)
            {
                counter[i]++;
            }
            else break; 
        }
    }

    //按每行非零元素的出现位置升序排列
    for (int i = 0; i < counter.Length; i++)
    {
        for (int j = i; j < counter.Length; j++)
        {
            if(counter[i]>counter[j])
            {
                double[] dTemp = matrix[i];
                matrix[i] = matrix[j];
                matrix[j] = dTemp;
            }
        }
    }
}

/// <summary>
/// 行初等变换(左侧最前非零位位置最靠前的行,只保留一个)
/// </summary>
/// <param name="matrix">矩阵</param>
private static void Operation2(double[][] matrix)
{
    //统计每行第一个非零元素的出现位置
    int[] counter = new int[matrix.Length];
    for (int i = 0; i < matrix.Length; i++)
    {
        for (int j = 0; j < matrix[i].Length; j++)
        {
            if (matrix[i][j] == 0)
            {
                counter[i]++;
            }
            else break;
        }
    }

    for (int i = 1; i < counter.Length; i++)
    {
        if (counter[i] == counter[i - 1] && counter[i] != matrix[0].Length)
        {
            double a = matrix[i - 1][counter[i - 1]];
            double b = matrix[i][counter[i]]; //counter[i]==counter[i-1]

            matrix[i][counter[i]] = 0;
            for (int j = counter[i] + 1; j < matrix[i].Length; j++)
            {
                double c = matrix[i - 1][j];
                matrix[i][j] -= (c * b / a);
            }

            break;
        }
    }
}

/// <summary>
/// 将和0非常接近的数字视为0
/// </summary>
/// <param name="matrix"></param>
private static void Operation3(double[][] matrix)
{
    for (int i = 0; i < matrix.Length; i++)
    {
        for (int j = 0; j < matrix[0].Length; j++)
        {
            if (Math.Abs(matrix[i][j]) <= 0.00001)
            {
                matrix[i][j] = 0;
            }
        }
    }
}

/// <summary>
/// 计算行最简矩阵的秩
/// </summary>
/// <param name="matrix"></param>
/// <returns></returns>
private static int Operation4(double[][] matrix)
{
    int rank = -1;
    bool isAllZero = true;
    for (int i = 0; i < matrix.Length; i++)
    {
        isAllZero = true;

        //查看当前行有没有0
        for (int j = 0; j < matrix[0].Length; j++)
        {
            if (matrix[i][j] != 0)
            {
                isAllZero = false;
                break;
            }
        }

        //若第i行全为0,则矩阵的秩为i
        if (isAllZero)
        {
            rank = i;
            break;
        }
    }
    //满秩矩阵的情况
    if (rank == -1)
    {
        rank = matrix.Length;
    }

    return rank;
}

3.Main函数调用

static void Main(string[] args)
{
    //示例矩阵1:秩为3
    double[][] matrix1 = new double[][] 
    {
        new double[] { 1, 1, 1 },
        new double[] { 1, 1, 0 },
        new double[] { 0, 1, 1 } 
    };

    Console.WriteLine(Rank(matrix1));

    //示例矩阵2:秩为3
    double[][] matrix2 = new double[][] 
    {
        new double[] { 3, 2, 0, 5, 0 }, 
        new double[] { 3, -2, 3, 6, -1 },
        new double[] { 2, 0, 1, 5, -3 },
        new double[] { 1, 6, -4, -1, 4 } 
    };

    Console.WriteLine(Rank(matrix2));

    //示例矩阵3:秩为3
    double[][] matrix3 = new double[][] 
    {
        new double[] { 2, 3, 1, -3, -7 }, 
        new double[] { 1, 2, 0, -2, -4 },
        new double[] { 3, -2, 8, 3, 0 },
        new double[] { 2, -3, 7, 4, 3 }
    };

    Console.WriteLine(Rank(matrix3));

    Console.ReadLine();
}

4.执行结果

225343_ywt4_1425762.png

转载于:https://my.oschina.net/Tsybius2014/blog/225703

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/109841.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • transactionscope mysql_TransactionScope事务对多个数据库的操作[通俗易懂]

    transactionscope mysql_TransactionScope事务对多个数据库的操作[通俗易懂].Net2.0引入了轻量级事务管理器(LighweightTransactionManager),即System.Transactions.TransactionManager。轻量级事务管理器具有最小的开销,对比使用轻量级事务管理器的事务和直接使用本地事务,并没有性能上的差别。如果一个事务里只有一个资源管理器,轻量级事务管理器可以让资源管理器来管理该事务,而轻量级事务管理器只负责监视他;如…

    2022年7月24日
    15
  • 《抓住听众心理——演讲者要知道的100件事》一第 1 章 人们是怎样思考和学习的…

    《抓住听众心理——演讲者要知道的100件事》一第 1 章 人们是怎样思考和学习的…本节书摘来异步社区《抓住听众心理——演讲者要知道的100件事》一书中的第1章,第1.1节,作者:【美】SusanM.Weinschenk译者:杨妩霞,杨煜泳责编:赵轩,更多章节内容可以访问云栖社区“异步社区”公众号查看。第1章 人们是怎样思考和学习的抓住听众心理——演讲者要知道的100件事“我从来没有‘教导’过我的学生;我只是尝…

    2025年11月3日
    3
  • Django(31)模板中常用的过滤器[通俗易懂]

    Django(31)模板中常用的过滤器[通俗易懂]模版常用过滤器在模版中,有时候需要对一些数据进行处理以后才能使用。一般在Python中我们是通过函数的形式来完成的。而在模版中,则是通过过滤器来实现的。过滤器使用的是|来使用。add将传进来的参

    2022年7月30日
    6
  • NFV基本概念_nf缩写是什么意思

    NFV基本概念_nf缩写是什么意思1.NFV相关基本概念NFV(网络功能虚拟化)SDN(软件定义网络)一个NFV的标准架构包括NFVinfrastructure(NFVI),MANO(ManagementandOrchestration)和VNFs,三者是标准架构中顶级的概念实体。NFVI(NFVInfrastructure)包含了虚拟化层(hypervisor或者容器管理系统,如Docker,以及vSwitch…

    2025年10月17日
    3
  • vue安装axios

    vue安装axiosVue使用axios

    2025年8月15日
    4
  • PHP-递归算法「建议收藏」

    PHP-递归算法「建议收藏」在PHP开发过程中,递归算法通常用于无限极分类。那么所谓递归就是一种函数调用自身的机制。简单来说就是在函数体内直接或间接自己调用自己,但需要设置自调用的条件,若满足条件,则调用函数本身,若不满足则终止本函数的自调用。并且递归算法的实现方法是有多种的,如通过“静态变量”、“全局变量”、“引用传参”的方式。下面我们就结合具体的代码示例,给大家介绍其中一种方法即利用静态变量的方法!代码如下:输…

    2022年8月11日
    4

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号