二叉树的实现

二叉树的实现

一.二叉排序树的结点类型

typedef int KeyType;
typedef struct node 
{       KeyType key;            	  
       InfoType data;          	  
        struct node *lchild,*rchild; 	  
}  BSTNode;

二.SearchBST(BSTNode *T,KeyType k)

伪代码

BSTNode *SearchBST(T,k)
{ 
      if (T为空 || T->key==k) 	            
            return T;                       //返回T,递归出口
      if (k<T->key)
        return SearchBST(T->lchild,k);   //在左子树中递归查找
      else
        return SearchBST(T->rchild,k);   //在右子树中递归查找
}

代码

BSTNode* SearchBST(BSTNode* T ,KeyType k)
{
    if (T == NULL || T->key == k)
        return T;
    if (k < T->key)
        return SearchBST(T->lchild,k);
    else
        return SearchBST(T->rchild,k);
}

三.InsertBST(BSTNode *&T,KeyType k)

伪代码

int InsertBST(T,k)	
{ 
     if (T为空)	 //原树为空, 新插入的记录为根结点
     {      创建一个新的key域为k的结点;
            return 1;
      }
      else if  (k==T->key) 	//存在相同关键字的结点,返回0
           return 0;
      else if (k<T->key) 
          return InsertBST(T->lchild,k); 	//插入到左子树中
      else  
          return InsertBST(p->rchild,k);  	//插入到右子树中
 }

代码

int InsertBST(BSTNode*& T,KeyType k)
{
    if (T == NULL)
    {
        T = new BSTNode;
        T->key = k;
        T->lchild = T->rchild = NULL;
        return 1;
    }
    else if (k == T->key)
        return 0;
    else if (k < T->key)
        return InsertBST(T->lchild,k);
    else
        return InsertBST(T->rchild,k);
}

四.CreatBST(KeyType A[],int n)

伪代码

BSTNode *CreatBST(A[],n) //返回树根指针
{      BSTNode *T;
       T为空树;
       int i=0;
       while (i<n) 
       {    InsertBST(T,A[i]);  //将A[i]插入二叉排序树T中
           i++;
       }
       return T;       	    //返回建立的二叉排序树的根指针
}

代码

BSTNode* CreatBST(KeyType A[],int n)
{
    BSTNode* T = NULL;
    int i = 0;
    while (i < n)
    {
        InsertBST(T,A[i]);
        i++;
    }
    return T;
}

二叉树的实现

五.DeleteBST(BSTNode *&T,KeyType k)

伪代码

int DeleteBST(T,k)  //在bt删除关键字为k的结点
{ 
        if (T为空) return 0;	//空树删除失败
        else 
        {      if (k<T->key) return DeleteBST(T->lchild,k);	
                       //递归在左子树中删除为k的结点
	           else if (k>T->key) return DeleteBST(T->rchild,k);
	                   //递归在右子树中删除为k的结点
               else  
               {       Delete(T);    //调用Delete(T)函数删除*T结点
	                   return 1;
              }
      }
}
void Delete(p)   	 //从二叉排序树中删除*p结点
{     BSTNode *q;
      if (p结点没有右子树)        	
      {    用其左孩子结点替换它
      }
      else if (p结点没有左子树)    	
      {    用其右孩子结点替换它
      }
      else Delete1(p,p->lchild);	
            //*p结点既没有左子树又没有右子树的情况
}
void Delete1(p,r)
  //当被删*p结点有左右子树时的删除过程
  {     BSTNode *q;
         if (r的右孩子不为空)
	   		Delete1(p,r->rchild);	//递归找*r的最右下结点
        else  		              //r指向最右下结点
        {   
        	用r结点替换p;
	   		删除r结点;
       }
  }

代码

int DeleteBST(BSTNode*& T,KeyType k)  
{
    if (T == NULL) return 0;	
    else
    {
        if (k < T->key) 
        	return DeleteBST(T->lchild,k);
        else if (k >T->key) 
        	return DeleteBST(T->rchild,k);
        else   
        {
            Delete(T);    
            return 1;
        }
    }
}
void Delete(BSTNode*& p)   	 
{
    BSTNode* q;
    if (p->rchild == NULL)        	
    {
        q = p; p = p->lchild;		
        free(q);
    }
    else if (p->lchild == NULL)    	
    {
        q = p; p = p->rchild;	
        free(q);
    }
    else Delete1(p,p->lchild);
}
void Delete1(BSTNode* p,BSTNode*& r)
{
    BSTNode* q;
    if (r->rchild != NULL)
        Delete1(p,r->rchild);	
    else  		              
    {
        p->key = r->key;  
        p->data = r->data;   
        q = r; r = r->lchild;          
        free(q); 	              
    }
}

二叉树的实现
二叉树的实现
二叉树的实现
二叉树的实现
二叉树的实现
二叉树的实现

六.

随机生成包含100000个节点的BST,节点的值为证书其范围为[-300000,300000],输出其树的高度。然后随机搜1000个数值,统计每次的ASL。

#include<iostream>
#include<cstdlib>
#include<ctime>
using namespace std;
typedef int KeyType;
typedef int InfoType;
typedef struct node
{
    KeyType key;            	  //关键字项
    InfoType data;          	  //其他数据域
    struct node* lchild, * rchild; 	  //左右孩子指针
}  BSTNode;
BSTNode* SearchBST(BSTNode* T ,KeyType k,int &count)
{
    if (T == NULL || T->key == k)
    {
        if (T!= NULL)
            count++;
        return T;
    }
        
    if (k < T->key)
    {
        count++;
        return SearchBST(T->lchild, k,count);
    }
    else
    {
        count++;
        return SearchBST(T->rchild, k,count);
    }
 }
        
int InsertBST(BSTNode*& T,KeyType k)
{
    if (T == NULL)
    {
        T = new BSTNode;
        T->key = k;
        T->lchild = T->rchild = NULL;
        return 1;
    }
    else if (k == T->key)
        return 0;
    else if (k < T->key)
        return InsertBST(T->lchild,k);
    else
        return InsertBST(T->rchild,k);
}
BSTNode* CreatBST(int n)
{
    BSTNode* T = NULL;
    int i = 0;
    int x;
    srand((unsigned int)time(NULL));
    while (i < n)
    {
        x = rand() * 10 % 300000 - 150000;
        InsertBST(T,x);
        i++;
    }
    return T;
}
void DestroyBST(BSTNode* bt)//销毁树
{
    if (bt != NULL)
    {
        DestroyBST(bt->lchild);
        DestroyBST(bt->rchild);
        delete bt;
    }
}
void InOrder(BSTNode* b)
{
    if (b != NULL)
    {
        InOrder(b->lchild);
        printf("%d ", b->key); 	//访问根结点
        InOrder(b->rchild);
    }
}
int GetHeight(BSTNode* BT)
{
    int lchilddep, rchilddep;
    if (BT == NULL) return(0); 	//空树的高度为0
    else
    {
        lchilddep = GetHeight(BT->lchild);
        //求左子树的高度为lchilddep
        rchilddep = GetHeight(BT->rchild);
        //求右子树的高度为rchilddep
        return(lchilddep > rchilddep) ? (lchilddep + 1) : (rchilddep + 1);
    }
}
int main()
{
    BSTNode* T;
    int n;
    int i;
    int count,sum=0;
    int height;
    cin >> n;
    srand((unsigned int)time(NULL));
    T=CreatBST( n);
    height=GetHeight(T);
    cout << "树的高度"<<height << endl;
    int a[1000];
    for (i = 0; i < 1000; i++)
    {
        a[i] = rand() * 10 % 300000 - 150000;
    }
    for (i = 0; i < 1000; i++)
    {
        count = 0;
        SearchBST(T, a[i], count);
        sum = sum + count;
    }
    cout << "ASL:";
    cout << sum / 1000;
    DestroyBST(T);
    return 0;
}

二叉树的实现
二叉树的实现
二叉树的实现
二叉树的实现

我通过许多次测试,树的平均高度为36,ASL的平均值为18。

七.总结

1.通过伪代码我们可以先理清思路,再写代码就不会卡住,运行错误,也可以更快的找出错误所在。

2.二叉排序树的操作函数中,删除结点函数较难,需要考虑多种情况,编写难度较大。

3.学习了如何随机产生一个随机数,并且产生在一定范围里。

4.二叉排序树的时间复杂度为O(log2(n)),查找成功的平均查找长度为[(n+1)/n]*log2(n+1)-1,最小高度为log2(n)+1。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/114450.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • iframe透明覆盖div_是实现战场透明

    iframe透明覆盖div_是实现战场透明IE5.5和NN6以上的浏览器支持 Frame ,Iframe对象的allowTransparency 方法,如果某对象的背景颜色设置为Transparency的,它将继承包含它容器的特性。我们可以通过这个特性实现透明背景的开/关。代码如下:a.html如下:<HTML><HEAD><TITLE></TITLE><MET…

    2025年8月13日
    4
  • A股30年,历史的拐点和暗示(大盘篇)

    A股30年,历史的拐点和暗示(大盘篇)来源:主动型量化作者:刘帅路

    2022年6月15日
    30
  • Lucene源码解析–TokenStream和AttributeSource

    Lucene源码解析–TokenStream和AttributeSource转 http://blog.itpub.net/28624388/viewspace-765691/一:Lucene的概况&lt;style./*Style.Definitions*/table.MsoNormalTable{mso-style-name:普通表格;mso-tstyle-rowband-size:0;mso-tstyle-colband-size:0;…

    2022年7月22日
    9
  • SPSS教程——进行卡方检验的相关步骤

    SPSS教程——进行卡方检验的相关步骤作为非参数检验之一的卡方检验用于判断样本是否来自特定分布的总体的检验方法,主要用于研究总体分布和理论分布是否存在显著差异。适用于有多个分类值的总体分布的分析。在这次教程中,我们给大家演示SPSS如何进行卡方检验。下面我们使用IBMSPSSStatistics26(win10)结合具体案例详细演示一遍吧。打开样本数据医学家研究发现,在一周中,周一心脏病患者猝死的人数较多,其他时间相同。周一到周日的比例近似为2.8:1:1:1:1:1:1。为此在网上搜集了一份心脏病人死亡日期的样本数据,用于推断

    2022年5月17日
    45
  • 数据库概念结构设计_数据库概念结构设计怎么写

    数据库概念结构设计_数据库概念结构设计怎么写一、概念模型在需求分析阶段所得到的应用需求应该首先抽象为信息世界的结构,然后才能更改、更准确地用某一数据库管理系统实现这些需求。概念模型的主要特点:1.能真实、充分地反映现实世界,包括事物和事物之间的联系,能满足用户对数据的处理要求,是现实世界的一个真是模型。2.易于理解,可以用它和不熟悉计算机的用户交换意见。用户的积极参与是数据库设计成功的关键。3.易于更改,当应用环境和应用要求改变时容易对概念模型修改和扩充。4.易于向关系、网状、层次等各种数据模型转换…

    2022年10月12日
    5

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号