深度学习—3.Pytorch基础

深度学习—3.Pytorch基础

一、张量

(一)张量介绍

    张量(也可以叫做Tensors)是pytorch中数据存储和表示的一个基本数据结构和形式,它是一个多维数组,是标量、向量、矩阵的高维拓展。它相当于Numpy的多维数组(ndarrays),但是tensor可以应用到GPU上加快计算速度, 并且能够存储数据的梯度信息。
    维度大于2的一般称为高维张量。以计算机的图像处理数据为例
    3维张量,可以表示图像的:通道数×高×宽
    4维张量,通常表示图像的:样本数×通道数×高×宽

在这里插入图片描述

(二)张量的创建

①基于torch.tensor()创建张量

torch.tensor()创建张量共有8个属性:data、dtype、shape、device、requires_grad、grad、grad_fn

import torch
#创建张量
#参数data:可以为列表,或者数组
t1=torch.tensor([3,5])
print(t1)
print("类型",type(t1))
print("设备",t1.device)
print("要求梯度",t1.requires_grad)
print("梯度值",t1.grad)
print("梯度函数",t1.grad_fn)
print("是否为叶子",t1.is_leaf)#自动创建的为叶子True
运行结果:
tensor([3, 5])
类型 <class 'torch.Tensor'>
设备 cpu
要求梯度 False
梯度值 None
梯度函数 None
是否为叶子 True

②创建张量,修改数据类型,要求梯度

import torch
#创建张量,修改数据类型为float,增加梯度回传之后张量的变化
t1=torch.tensor([3,5],dtype=torch.float,requires_grad=True)
print(t1)
print("类型",type(t1))
print("设备",t1.device)
print("要求梯度",t1.requires_grad)
print("梯度值",t1.grad)
print("梯度函数",t1.grad_fn)
print("是否为叶子",t1.is_leaf)#自动创建的为叶子True
运行结果:
tensor([3., 5.], requires_grad=True)
类型 <class 'torch.Tensor'>
设备 cpu
要求梯度 True
梯度值 None
梯度函数 None
是否为叶子 True

③创建张量,非叶子(必须要求梯度,才可以)

import torch
#创建张量
t1=torch.tensor([3,5],dtype=torch.float,requires_grad=True)
t2=t1*10
print(t2)
print("类型",type(t2))#<class 'torch.Tensor'>
print("设备",t2.device)#cpu
print("要求梯度",t2.requires_grad)#False
print("梯度值",t2.grad)#None
print("梯度函数",t2.grad_fn)#Mul是加法等到的
#只有叶子可以计算梯度,不是叶子没有梯度,如果查看会出警告
print("是否为叶子",t2.is_leaf)#<Add>自动创建的为叶子True
运行结果:
tensor([30., 50.], grad_fn=<MulBackward0>)
类型 <class 'torch.Tensor'>
设备 cpu
要求梯度 True
梯度值 None
梯度函数 <MulBackward0 object at 0x000000000258E7B8>#Mul是加法等到的
是否为叶子 False

总结
(1)如果原始tensor是要求梯度,该tensor是一个叶子节点,基于该tensor的操作是个非叶子节点,没有梯度信息的
(2)如果原始tensor是不要求梯度,该tensor是一个叶子节点,基于该tensor的操作得到也是一个叶子节点

④利用Numpy创建张量

1、直接利用Numpy创建数组,转换为张量
import torch
import  numpy as np

#基于Numpy的创建Tensor
arr=np.array([1,2,3,6])
t1=torch.tensor(arr)
print(t1)
运行结果
tensor([1, 2, 3, 6], dtype=torch.int32)
2、修改原数组,看看张量与数组的关系

import torch
import  numpy as np
#基于Numpy的创建Tensor
arr=np.array([1,2,3,6])
t1=torch.tensor(arr)
print(t1)
arr[0]=1000
print('修改后'.center(60,'-'))
print("数组\n",arr)
print("tensor\n",t1)

tensor([1, 2, 3, 6], dtype=torch.int32)
----------------------------修改后-----------------------------
数组
 [1000    2    3    6]
tensor
 tensor([1, 2, 3, 6], dtype=torch.int32)
3、利用form_numpy创建张量,并修改和查看内存
import torch
import  numpy as np
#基于Numpy的创建Tensor
arr=np.array([1,2,3,6])
t1=torch.tensor(arr)
print(t1)
#如果使用from_numpy创建tensor,张量和数组共享内存,指向同一个共享
#张量和数组,一个变换,另一个也变换
t2=torch.from_numpy(arr)
arr[0]=1000
print('修改后'.center(60,'-'))
print("数组\n",arr,id(arr))
print("tensor\n",t2,id(arr))
运行结果:
tensor([1, 2, 3, 6], dtype=torch.int32)
----------------------------修改后-----------------------------
数组
 [1000    2    3    6] 4151456
tensor
 tensor([1000,    2,    3,    6], dtype=torch.int32) 4151456
4、利用form_numpy创建张量后进行修改,将张量转换为数组
import torch
import  numpy as np

#基于Numpy的创建Tensor
arr=np.array([1,2,3,6])
t2=torch.from_numpy(arr)
arr[0]=1000
t2[-1]=999
print('修改后'.center(60,'-'))
print("数组\n",arr,id(arr))
print("tensor\n",t2,id(arr))
#将tensor转换为数组
t2_arrr=t2.numpy()
print(t2_arrr, type(t2_arrr))
运行结果:
----------------------------修改后-----------------------------
数组
 [1000    2    3  999] 31348896
tensor
 tensor([1000,    2,    3,  999], dtype=torch.int32) 31348896
[1000    2    3  999] <class 'numpy.ndarray'>

二、梯度

只有x是叶子节点,其他节点y、z都是被动生成的,通过out.backward()进行反向传播

import torch
#x是叶子节点
x=torch.ones((2,2),requires_grad=True)
print(x)
y=x+2

z=y*y*3
print(y)
print(z)
out=z.mean()
print(out)
#在进行反向传播之前,查看x的梯度
print("x的梯度before",x.grad)
#反向传播
out.backward()
#只有叶子节点才能计算梯度,查看x的梯度
print("x的梯度",x.grad)
运行结果:
tensor([[1., 1.],
        [1., 1.]], requires_grad=True)
tensor([[3., 3.],
        [3., 3.]], grad_fn=<AddBackward0>)
tensor([[27., 27.],
        [27., 27.]], grad_fn=<MulBackward0>)
tensor(27., grad_fn=<MeanBackward0>

x的梯度before None

x的梯度 tensor([[4.5000, 4.5000],
        [4.5000, 4.5000]])

三、反向传播

利用一个具体环境,理解反向传播:
已知房屋的面积与价格成正比例关系,利用通过已知的真实价格与

import torch

#设置随机种子,使得随机数不发生变换
torch.manual_seed(1)
#面积
x=torch.randint(low=10,high=40,size=(10,1))
#print(x)

#价格
y=5*x+torch.randn(10,1)
#y=5*x+torch.linspace(-0.002,0.002,100).reshape(-1,1)
#print(y)

#寻找w,b
#随机制订w,b
#w=torch.randn([2.0],requires_grad=True)#权重,要求梯度,才能回传
w=torch.tensor([2.0],requires_grad=True)
#b=torch.randn(1,requires_grad=True)#偏执,要求梯度,才能回传
b=torch.zeros(1,requires_grad=True)

#定义学习率
lr=0.0001
for epoch in range(5000):
    # wx=w*x+b
    #print(wx)
    y_pred=w*x+b
    #回归问题:1*2((y_pred-y)**2)
    #均方误差
    loss=0.5*(((y_pred-y)**2).mean())#很多值
    #print(loss)
    #print("w之前的梯度", w.grad)
    loss.backward()
    #print("w的梯度",w.grad)
    #更新梯度
    #w = w - lr * w.grad
    w.data= w.data - lr * w.grad
    #b = b - lr * b.grad
    b.data = b.data - lr * b.grad
    #结束条件
    print("第{}次的loss={}".format(epoch,loss))
    print("第{}次的w={},b={}:".format(epoch, w.grad, b.grad))
    if loss.data.numpy()<1:
        break

print("最终的w和b",w,b)

import matplotlib.pyplot as plt
plt.scatter(x.data.numpy(),y.data.numpy())
#plt.plot(x.data.numpy,(w*x+b).data.numpy())
plt.show()
0次的loss=3678.2663574218750次的w=tensor([-2451.6199]),b=tensor([-82.4380]):
第1次的loss=3101.1530761718751次的w=tensor([-4702.6914]),b=tensor([-158.1258]):
第2次的loss=2131.903808593752次的w=tensor([-6569.0713]),b=tensor([-220.8654]):
第3次的loss=1081.17980957031253次的w=tensor([-7898.0845]),b=tensor([-265.5179]):
第4次的loss=285.75778198242194次的w=tensor([-8581.0156]),b=tensor([-288.4241]):
第5次的loss=0.58497250080108645次的w=tensor([-8561.9990]),b=tensor([-287.7038]):
最终的w和b tensor([5.8764], requires_grad=True) tensor([0.1303], requires_grad=True)

在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/114465.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 统计学中ROC曲线的认识

    统计学中ROC曲线的认识ROC曲线的横坐标表示一个负的实例被当作正实例的概率(FPR),纵坐标表示一个正的实例被当作正的实例的概率(TPR)。ROC曲线标识了,为了达到某个TPR,伴随而来的该分类器的FPR是多少当把所有的实例都分类成正的以后,TPR为100%,FPR也是100%,这解释了为什么ROC曲线必然过点(100%,100%)。同理,如果把所有的实例都判为负类,那么,TPR为0,FPR也为0,所以

    2022年5月16日
    56
  • python怎么用反三角函数_反三角函数怎么用

    展开全部已知:cosα32313133353236313431303231363533e4b893e5b19e31333366303132=3/5,求α。解:已知:cosα=3/5有:α=arccos(3/5)经查表(或按计算器),得:α≈53.13010235°,或:α≈323.13010235°考虑到三角函数的周期性,得:α≈360°×k+53.13010235°,或:α≈360°×k+323…

    2022年4月7日
    71
  • 详细介绍scrollIntoView()方法属性

    详细介绍scrollIntoView()方法属性因为工作中用到了锚点设置,常用的总是出问题,后来扒拉出了这个属性,详细研究了下方便日后使用介绍scrollIntoView()的详细属性简介该scrollIntoView()方法将调用它的元素滚动到浏览器窗口的可见区域。PS:根据其他元素的布局,元素可能无法完全滚动到顶部或底部。TIPS:页面(容器)可滚动时才有用!语法element.scrollIntoView();//等同于element.scrollIntoView(true)element.scrollIntoV

    2022年6月15日
    71
  • B站视频API接口_视频搜索接口

    B站视频API接口_视频搜索接口Vue2.5打造简洁视频webapp项目api接口此文档为非官方接口文档,无法保证接口有效性。以下接口为本项目目前使用的接口(也可以直接看src/api/文件目录下的接口)仿B站视频网站项目源码:进入项目源码仓库了解项目更多内容请看:Vue2.5打造简洁视频webapp(近期停更。。。)首页模块推荐视频https://www.bilibili.com/index/ding.json搜索模块默认搜索词http://api.bilibili.cn/x/web-interface/sear

    2022年10月4日
    6
  • linux下打包命令_linux常用命令全集

    linux下打包命令_linux常用命令全集linux系统中遇到要打包文件的时候我们该使用什么命令呢?下面由秋天网Qiutian.ZqNF.Com小编为大家整理了linux系统中打包文件的命令详解的相关知识,希望对大家有帮助!linux系统中打包文件的命令详解tartar的选项与参数非常的多!我们只讲几个常用的选项,更多选项您可以自行mantar查询啰![[emailprotected]~]#tar[-j|-z][cv]…

    2022年8月24日
    7
  • 关于网站备案相关流程的通知_网站备案需要什么资料

    关于网站备案相关流程的通知_网站备案需要什么资料最近遇到个头疼的事,关于网站备案。目前有个网站W,备案在A,但是服务器不在A,在B(用的是电信的接入ip),就在前几天收到一封来自A的邮件大致意思如下:经A扫描,发现网站W的服务器不在A,A要取消我们网站的接入,让我们处理这个问题。由于自己对这块东西本身就不熟悉,所以走了很多弯路(原因是多方面的,具体就不说了,不是重点),不过好在最终找到解决方案:在电信新增接入(10000号找个电

    2025年7月8日
    3

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号