python+opencv图像模板匹配—单模板匹配

python+opencv图像模板匹配—单模板匹配

一、模板匹配

模板匹配目标在于在A图像中寻找B图像最相似的部分,A为输入图像,B为模板图像。其原理将模板图像B在图像A上滑动,遍历所有像素完成匹配
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

二、单模板匹配

在opnencv中利用函数cv2.matchTemplate函数实现:

result=cv2.matchTemplate(image,templ,method[,mask])
其中:
result为匹配返回结果,格式为矩阵
image为输入图像
templ为模板图像,必须小于或等于输入图像,图像类型必须相同

method为匹配方法,现阶段有6中方法:
cv2.TM_SQDIFF/cv2.TM_SQDIFF_NORMED/
cv2.TM_CCORR/cv2.TM_CCORR_NORMED
cv2.TM_CCOEFF/cv2.TM_CCOEFF_NORMED

mask为模板掩模,需要和图像模板templ具有相同类型和大小,一般为默认,只有在SQDIFF和CCORR_NORMED中支持

由于不同模板匹配方法不同,选用cv2.TM_SQDIFF函数进行匹配
利用cv2.minMaxLoc( )寻找结果中最大值,最小值,最大值位置,最小值位置
所得到的结果也实验代码如下

import cv2
import numpy as np
from matplotlib import pyplot as plt
#读取图像为灰度图像
img=cv2.imread('C:/Users/wp/Desktop/five/5.jpg',0)
#读取模板图像
template=cv2.imread('C:/Users/wp/Desktop/five/7.jpg',0)
#模板图像尺寸
th,tw=template.shape[::]
print(th,tw)

#进行模板匹配:匹配方式为SQDIFF,result的值为0表示匹配度越好,反之越差
rv=cv2.matchTemplate(img,template,cv2.TM_SQDIFF)
print(rv)
#归一化,将矩阵结果归一到0到1的范围内
cv2.normalize(rv, rv, 0, 1, cv2.NORM_MINMAX, -1 )
print(rv)

minVal,maxVal,minLoc,maxLoc=cv2.minMaxLoc(rv)
#相似度最小值
print("相似度最小值",minVal)
#相似度最大值
print("相似度最大值",maxVal)


#左上顶点坐标
topLeft=minLoc
#右下顶点坐标
bottomRight=(topLeft[0]+tw,topLeft[1]+th)

#画图,左上顶点,和右下顶点,白色255,宽度为2
cv2.rectangle(img,topLeft,bottomRight,255,2)

cv2.imshow("Matching Result", rv)
cv2.imshow("Detected Point", img)
cv2.waitKey()
cv2.destroyAllWindows()

结果:

280 89
[[1.5662291e+08 1.5261354e+08 1.4868202e+08 ... 1.7876922e+08
  1.7973040e+08 1.8063094e+08]
 [1.5570419e+08 1.5167946e+08 1.4771798e+08 ... 1.7974778e+08
  1.8073296e+08 1.8166957e+08]
 [1.5488346e+08 1.5082822e+08 1.4682650e+08 ... 1.8087574e+08
  1.8187194e+08 1.8283654e+08]
 ...
 [2.4001792e+08 2.3657427e+08 2.3339872e+08 ... 2.5952496e+08
  2.6294157e+08 2.6638003e+08]
 [2.4198950e+08 2.3858016e+08 2.3543363e+08 ... 2.6101248e+08
  2.6439066e+08 2.6780973e+08]
 [2.4398931e+08 2.4063030e+08 2.3747517e+08 ... 2.6249709e+08
  2.6586096e+08 2.6926288e+08]]
[[0.5814756  0.5665784  0.5519705  ... 0.66376233 0.66733366 0.67067975]
 [0.57806206 0.5631077  0.54838854 ... 0.6673982  0.6710588  0.67453885]
 [0.5750125  0.5599449  0.54507613 ... 0.6715893  0.67529076 0.67887485]
 ...
 [0.89133763 0.8785424  0.8667434  ... 0.9638179  0.9765126  0.9892885 ]
 [0.8986632  0.8859955  0.8743043  ... 0.9693449  0.9818968  0.9946007 ]
 [0.9060937  0.893613   0.88188976 ... 0.9748611  0.9873599  1.        ]]
相似度最小值 0.0
相似度最大值 1.0

在这里插入图片描述
在这里插入图片描述

三、参考文献及书籍

Opencv轻松入门,面向python,电子工业出版社,李立宗著

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/114566.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • export命令什么意思_report函数

    export命令什么意思_report函数一个变量创建时,它不会自动地为在它之后创建的shell进程所知。而命令export可以向后面的shell传递变量的值。当一个shell脚本调用并执行时,它不会自动得到原为脚本(调用者)里定义的变量的访问权,除非这些变量已经被显式地设置为可用。export命令可以用于传递一个或多个变量的值到任何后继脚本。    —-《UNIX教程》

    2022年9月6日
    2
  • Linux基础——gcc编译、静态库与动态库(共享库)

    Linux基础——gcc编译、静态库与动态库(共享库)gcc编译器1、gcc工作流程2、gcc常用参数参数用途-v查看版本-o产生目标文件-I+目录指定头文件目录-D编译时定义宏-00/-01/-03没有优化/缺省值/优化级别最高-Wall提示更多警告信息-c只编译子程序-E生成预处理文件…

    2022年9月27日
    0
  • Sublime Text3中几款比较好看的主题

    Sublime Text3中几款比较好看的主题前言(一)(二)(三)(四)

    2022年7月27日
    2
  • C# 多线程 Parallel.ForEach 和 ForEach 效率问题研究及理解

    C# 多线程 Parallel.ForEach 和 ForEach 效率问题研究及理解最近要做一个大数据dataTable循环操作,开始发现运用foreach,进行大数据循环,并做了一些逻辑处理。在循环中耗费的时间过长。后来换成使用Parallel.ForEach来进行循环。一开始认为, 数据比较大时,Parallel.ForEach肯定比 ForEach效率高,后来发现,其实并不是这样。我用了1000万次循环测试:{CSDN:CODE:2601125}

    2022年7月19日
    20
  • navcat premium 15 for mac 激活码【最新永久激活】「建议收藏」

    (navcat premium 15 for mac 激活码)好多小伙伴总是说激活码老是失效,太麻烦,关注/收藏全栈君太难教程,2021永久激活的方法等着你。IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.net/100143.html1M2OME2TZY-eyJsaWNlbnNlSWQi…

    2022年4月2日
    195
  • k8s(一)入门

    k8s(一)入门k8s学习导图Borg架构图重要插件Pod概念网络通讯方式学习导图Borg架构图Borg是k8s的前身Borg架构图BorgMaster:负责请求分发,整个集群的大脑BorgLet:真正运行的节点,提供计算sheduler:调度器,将数据写入到Paxos(键值对数据库)BorgLet监听Paxos数据库,如果发现有自己的请求则处理相应的任务k8s架构图api sever:一切服务的访问入口 包括scheduler RC etcd kubectl kubelet等等scheduler:

    2022年8月9日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号