hdu4035之经典慨率DP

hdu4035之经典慨率DP

大家好,又见面了,我是全栈君。

Maze

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)
Total Submission(s): 1419    Accepted Submission(s): 511
Special Judge




Problem Description
When wake up, lxhgww find himself in a huge maze.

The maze consisted by N rooms and tunnels connecting these rooms. Each pair of rooms is connected by one and only one path. Initially, lxhgww is in room 1. Each room has a dangerous trap. When lxhgww step into a room, he has a possibility to be killed and restart from room 1. Every room also has a hidden exit. Each time lxhgww comes to a room, he has chance to find the exit and escape from this maze.

Unfortunately, lxhgww has no idea about the structure of the whole maze. Therefore, he just chooses a tunnel randomly each time. When he is in a room, he has the same possibility to choose any tunnel connecting that room (including the tunnel he used to come to that room).

What is the expect number of tunnels he go through before he find the exit?

 


Input
First line is an integer T (T ≤ 30), the number of test cases.

At the beginning of each case is an integer N (2 ≤ N ≤ 10000), indicates the number of rooms in this case.

Then N-1 pairs of integers X, Y (1 ≤ X, Y ≤ N, X ≠ Y) are given, indicate there is a tunnel between room X and room Y.

Finally, N pairs of integers Ki and Ei (0 ≤ Ki, Ei ≤ 100, Ki + Ei ≤ 100, K1 = E1 = 0) are given, indicate the percent of the possibility of been killed and exit in the ith room.

 


Output
For each test case, output one line “Case k: ”. k is the case id, then the expect number of tunnels lxhgww go through before he exit. The answer with relative error less than 0.0001 will get accepted. If it is not possible to escape from the maze, output “impossible”.

 


Sample Input
   
   
3 3 1 2 1 3 0 0 100 0 0 100 3 1 2 2 3 0 0 100 0 0 100 6 1 2 2 3 1 4 4 5 4 6 0 0 20 30 40 30 50 50 70 10 20 60

 


Sample Output
   
   
Case 1: 2.000000 Case 2: impossible Case 3: 2.895522

有一颗树n个结点n-1条边,根结点为1

对于在点i下一步有3种情况:

1:被杀死回到点1 — 概率为ki

2:找到出口退出—-慨率为ei

3:沿着边进入下一个点

求从点1開始到退出的平均须要走的边数

/*分析:
对于点i:
1,点i是叶子结点,则:
E(i)=ki*E(1)+ei*0+(1-ki-ei)*(E(father)+1)
=>E(i)=ki*E(1)+(1-ki-ei)*E(father)+(1-ki-ei)
2,点i非叶子结点,则:
E(i)=ki*E(1)+ei*0+(1-ki-ei)/m *(E(father)+1)+(1-ki-ei)/m*SUM(E(child)+1)
=>E(i)=ki*E(1)+(1-ki-ei)/m *E(father)+(1-ki-ei)/m*SUM(E(child))+(1-ki-ei);//作为1式 

从公式可知求E(i)须要求到E(father),E(child)
但这是非常难求到的,由于即使是叶子结点也须要知道E(1),可是E(1)是未知的须要求的

如果:E(i)=Ai*E(1)+Bi*E(father)+Ci;//作为2式

所以:E(child)=Aj*E(1)+Bj*E(i)+Cj;
=>SUM(E(child))=SUm(Aj*E(1)+Bj*E(i)+Cj);
带入1式 
 =>E(i)=ki*E(1)+(1-ki-ei)/m *E(father)+(1-ki-ei)/m*SUm(Aj*E(1)+Bj*E(i)+Cj)+(1-ki-ei);
 =>(1-(1-ki-ei)/m*SUM(Bj))*E(i)=(ki+(1-ki-ei)/m*SUM(Aj))*E(1)+(1-ki-ei)/m *E(father)+(1-ki-ei+(1-ki-ei)/m*SUM(cj));
 与上述2式对照得到:
 Ai=(ki+(1-ki-ei)/m*SUM(Aj))       / (1-(1-ki-ei)/m*SUM(Bj))
 Bi=(1-ki-ei)/m                   / (1-(1-ki-ei)/m*SUM(Bj))
 Ci=(1-ki-ei+(1-ki-ei)/m*SUM(cj)) / (1-(1-ki-ei)/m*SUM(Bj))
 所以Ai,Bi,Ci仅仅与i的孩子Aj,Bj,Cj和本身ki,ei有关
 于是能够从叶子開始逆推得到A1,B1,C1
 在叶子节点:
 Ai=ki;
 Bi=(1-ki-ei);
 Ci=(1-ki-ei);
 而E(1)=A1*E(1)+B1*0+C1;
 =>E(1)=C1/(1-A1);
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std;

const int MAX=10000+10;
const double eps=1e-9;
int n,size;
int head[MAX];
double A,B,C,k[MAX],e[MAX];

struct Edge{
	int v,next;
	Edge(){}
	Edge(int V,int NEXT):v(V),next(NEXT){}
}edge[MAX*2];

void Init(){
	memset(head,-1,sizeof head);
	size=0;
}

void InsertEdge(int u,int v){
	edge[size]=Edge(v,head[u]);
	head[u]=size++; 
}

void dfs(int u,int father){
	double a=0,b=0,c=0,p;
	int m=0;
	for(int i=head[u]; i != -1;i=edge[i].next){
		int v=edge[i].v;
		if(v == father)continue;
		dfs(v,u);
		a+=A;
		b+=B;
		c+=C;
		++m;
	}
	if(father != -1)++m;
	p=(1-k[u]-e[u])/m;
	A=(k[u]+p*a)/(1-p*b);
	B=p/(1-p*b);
	C=(1-k[u]-e[u]+p*c)/(1-p*b);
}

int main(){
	int t,u,v,num=0;
	scanf("%d",&t);
	while(t--){
		scanf( "%d",&n);
		Init();
		for(int i=1;i<n;++i){
			scanf("%d%d",&u,&v);
			InsertEdge(u,v);
			InsertEdge(v,u);
		}
		for(int i=1;i<=n;++i){
			scanf("%lf%lf",&k[i],&e[i]);
			k[i]/=100;
			e[i]/=100;
		} 
		dfs(1,-1);
		if(fabs(A-1)<eps)printf("Case %d: impossible\n",++num);
		else printf("Case %d: %.6f\n",++num,C/(1-A));
	}
	return 0;
}

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/115355.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 支持向量机与支持向量回归(support vector machine and support vector regression)

    支持向量机与支持向量回归(support vector machine and support vector regression)支持向量机和支持向量回归是目前机器学习领域用得较多的方法,不管是人脸识别,字符识别,行为识别,姿态识别等,都可以看到它们的影子。在我的工作中,经常用到支持向量机和支持向量回归,然而,作为基本的理论,却没有认真地去梳理和总结,导致有些知识点没有彻底的弄明白。这篇博客主要就是想梳理一遍支持向量机和支持向量回归的基础理论知识,一个是笔记,另一个是交流学习,便于大家共勉。凸集、凸函数、凸优化凸集:如果集合…

    2022年5月29日
    33
  • 学习Android之SharedPreferences使用

    学习Android之SharedPreferences使用

    2021年12月2日
    45
  • Pycharm2020.1安装中文语言插件教程,不需要汉化

    Pycharm2020.1安装中文语言插件教程,不需要汉化方法一(在搜索不到插件):1.安装好Pycharm并打开Pycharm2.打开File,找到Settings并打开3.打开Settings中的Pulgins,选择Marketplace,搜索chinese出现下图这个就可以在线安装,不出现离线安装(方法二)方法二(推荐):1.查看Pycharm版本help–about2.打开中文插件的下载地址(https://plugins.j…

    2022年5月9日
    305
  • 同步传输与异步传输相比_以下效率最高的数据交换控制方式

    同步传输与异步传输相比_以下效率最高的数据交换控制方式在网络通信过程中,通信双方要交换数据,需要高度的协同工作。为了正确的解释信号,接收方必须确切地知道信号应当何时接收和处理,因此定时是至关重要的。在计算机网络中,定时的因素称为位同步。同步是要接收方按照发送方发送的每个位的起止时刻和速率来接收数据,否则会产生误差。通常可以采用同步或异步的传输方式对位进行同步处理。1.异步传输(AsynchronousTransmission):异步传输将比

    2025年11月22日
    4
  • 二进制小数转十进制方法_小数进制转换

    二进制小数转十进制方法_小数进制转换知识点一:一个数的负次方即为这个数的正次方的倒数。方法一、转换分数法参考文章:https://jingyan.baidu.com/article/597a0643614568312b5243c0.html参考文章:https://zhidao.baidu.com/question/1308562360873359899.html举例:将二进制0.1111转换成十进制数二进制…

    2025年12月9日
    5
  • git 命令怎么删除远程分支文件_git删除远程仓库分支

    git 命令怎么删除远程分支文件_git删除远程仓库分支本地删除请看:git命令怎么删除本地分支查看所有分支查看项目的远程分支:gitbranch-r删除远程分支比如我们要删除远程分支origin/SLT_table_reportgitpushorigin-d分支名我们执行:gitpushorigin-dSLT_table_report删除成功注意这里不能写成origin/SLT_table_report,不然会报错:具体请参考【git删除远程分支报错error:unabletodelete‘

    2022年10月16日
    5

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号