[算法系列之二十八]并查集(不相交集合)

[算法系列之二十八]并查集(不相交集合)

大家好,又见面了,我是全栈君。

一 概述

并查集(Disjoint set或者Union-find set)是一种树型的数据结构,经常使用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。

有一个联合-查找算法(union-find algorithm)定义了两个操作用于此数据结构:

Find:确定元素属于哪一个子集。它能够被用来确定两个元素是否属于同一子集。
Union:将两个子集合并成同一个集合。

由于它支持这两种操作,一个不相交集也常被称为联合-查找数据结构(union-find data structure)或合并-查找集合(merge-find set)。

其他的重要方法。MakeSet。用于建立单元素集合。

有了这些方法,很多经典的划分问题能够被解决。

为了更加精确的定义这些方法,须要定义怎样表示集合。

一种经常使用的策略是为每一个集合选定一个固定的元素,称为代表。以表示整个集合。

接着。Find(x)返回x所属集合的代表,而Union(x,y)使用两个集合的代表x,y作为參数。

二 主要操作

1.MakeSet(x)
2.Find(x)
3.Union(x,y)

2.1 MakeSet(x) 建立一个新的集合

建立一个新的集合,其唯一成员(由于是其代表)就是x。

由于集合是不相交的。故要求x没有在其他集合中出现过。

2.2 Find(x) 包括x集合的代表

返回一个指针,指向包括x的(唯一)集合的代表。

2.3 Union(x,y) 合并两个不相交集合

将包括x和y的动态集合合并成为一个新的集合。所得集合的代表能够是两个集合的不论什么成员。但在非常多情况下,我们一般选择两个集合之前代表中的一个作为新的代表。

三 不相交集合森林(有根树表示集合)

不相交集合能够用链表实现。可是还有一种更快的方法—–有根树表示集合。树中的每一个节点都包括集合的一个成员,每棵树都表示一个集合。

例如以下图:

这里写图片描写叙述

左边的树表示集合{b,c,e,h}其c是代表。右边的树表示集合{d,f,g}其f是代表。

3.1 MakeSet(x)

MakeSet创建一棵仅包括一个节点的树。初始时父节点为自己。

#define N 100

//申请内存的大小
int parent[N];

// parent[x]表示x的父节点
void MakeSet(int x){
    parent[x] = x;
}

3.2 Find(x)

Find(x)指向包括x的(唯一)集合的代表。沿着父节点指针一直找下去,直到找到树根为止。

int Find(int x){
    // 根节点即集合代表
    if(x == parent[x]){
        return x;
    }//if
    // 沿着父节点指针寻找
    Find(parent[x]);
}

3.3 Union(x,y)

Union操作使的一棵树的根指向还有一棵树的根。例如以下图:

这里写图片描写叙述

// 合并
void Union(int x,int y){
    x = Find(x);
    y = Find(y);
    parent[y] = x;
}

四 优化

4.1 按秩合并

其思想是使包括较少结点的树指向包括较多结点的树的根。

我们并不显示的记录以每一个结点为根的子树的大小,而是採用一种能够简化分析的方法。对每一个结点,我们用秩表示结点高度(从该结点到某一后代叶节点的最长路径上边的数目)的一个上界。在按秩合并中,具有较小秩的根在Union操作中指向较大秩的根。

rank[x]表示x节点的秩。当由MakeSet创建了一个集合时,相应的树中唯一节点的初始秩为0,每一个Find操作都不改变不论什么秩。

// parent[x]表示x的父节点 rank[x] 表示x的秩
void MakeSet(int x){
    parent[x] = x;
    rank[x] = 0;
}

当对两棵树应用Union时,有两种情况:
(1) 当两个秩不相等时。我们使具有较高秩的根称为具有较小秩的根的父节点。但秩本身保持不变。
(2)当两个秩相等时。任选一个根作为父节点,并添加其秩的值。

void Union(int x, int y){
    x = Find(x);
    y = Find(y);
    if(x == y) {
        return;
    }//if
    if(rank[x] > rank[y]){
        parent[y] = x;
    }//if
    else if(rank[x] < rank[y]){
        parent[x] = y;
    }//else
    else{
        rank[x]++;
    }//else
}

4.2 路径压缩

寻找祖先时,我们一般採用递归查找,可是当元素非常多亦或是整棵树变为一条链时。每次Find(x)都是O(n)的复杂度。为了避免这样的情况,我们需对路径进行压缩。即当我们经过”递推”找到祖先节点后,”回溯”的时候顺便将它的子孙节点都直接指向祖先,这样以后再次Find(x)时复杂度就变成O(1)了。例如以下图所看到的。可见,路径压缩方便了以后的查找。

这里写图片描写叙述

当中三角表示子树。其根为所看到的节点。

// 带路径压缩的Find
int Find(int x){
    // 根节点即集合代表
    if(x != parent[x]){
        // 更新节点x使之指向根
        parent[x] = Find(parent[x]);
    }//if
    return parent[x];
}

Find是一种两趟方法:一趟是沿查找路径上升,直到找到根;还有一趟是沿查找路径下降。一便更新每一个节点。使之指向根节点。

五 复杂度分析

空间复杂度为O(N)。建立一个集合的时间复杂度为O(1)。N次合并M查找的时间复杂度为O(M Alpha(N)),这里Alpha是Ackerman函数的某个反函数,在非常大的范围内(人类眼下观測到的宇宙范围估算有10的80次方个原子,这小于前面所说的范围)这个函数的值能够看成是不大于4的,所以并查集的操作能够看作是与m成线性关系。

六 应用

并查集常作为还有一种复杂的数据结构或者算法的存储结构。常见的应用有:求无向图的连通分量个数,近期公共祖先(LCA),带限制的作业排序,实现Kruskar算法求最小生成树等。

七 引用

并查集
数据结构之并查集
算法导论

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/116538.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • mysql整型转字符串_java中如何将字符串转换为字符数组

    mysql整型转字符串_java中如何将字符串转换为字符数组cast(字段asunsigned)例如1:把表结构中的name(字符串)字段转化成整型cast(nameasunsigned)应用:将表A记录按name字段从小到大排列select*fromAorderbycast(nameasunsigned); http://xuyemao.blog.163.com/blog/static/24454858…

    2022年8月30日
    13
  • 如何使用Python读取大文件

    如何使用Python读取大文件

    2021年11月24日
    48
  • java进行四舍五入_java 实现四舍五入功能

    java进行四舍五入_java 实现四舍五入功能告诉你一个小技巧,用4行java代码实现一个四舍五入功能的实例。四舍五入是一种精确度的计数保留法,与其他方法本质相同。但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一,这种保留法的误差总和是最小的。例子例如π,便被四舍五入,大多保留下3.14了。但是,有的时候不可以用四舍五入的方法,而要用”进一法”和”退一法”。例如,288个学生春游,45人一辆大巴,算下来…

    2022年5月21日
    31
  • 三种线程安全的单例模式(哪些集合是线程安全的)

    三种线程安全的单例模式(哪些集合是线程安全的)在单线程开发环境中,我们经常使用ArrayList作容器来存储我们的数据,但它不是线程安全的,在多线程环境中使用它可能会出现意想不到的结果。多线程中的ArrayList:我们可以从一段代码了解并发环境下使用ArrayList的情况:publicclassConcurrentArrayList{publicstaticvoidmain(String[]args)throwsInterruptedException{List<Integer>l

    2022年4月18日
    40
  • DSSM & Multi-view DSSM TensorFlow实现

    DSSM & Multi-view DSSM TensorFlow实现LearningDeepStructuredSemanticModelsforWebSearchusingClickthroughData以及其后续文章AMulti-ViewDeepLearningApproachforCrossDomainUserModelinginRecommendationSystems的实现Demo。1.数据D

    2025年8月19日
    5
  • SAP WebIDE里OData service catalog的实现原理「建议收藏」

    SAP WebIDE里OData service catalog的实现原理「建议收藏」我们在SAPWebIDE里创建UI5应用时,可以从Servicecatalog里选择需要的OData服务,如下图所示:这个ag3-backend是什么意思?是我在SAPCloudPlatform的Destination标签页里维护的一个Destination:这个destination指向了一个OnpremiseABAPNetweaver系统,AG3,通过SAPCloud…

    2022年10月18日
    4

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号