state-of-the-art implementations related to visual recognition and search

state-of-the-art implementations related to visual recognition and search

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

http://rogerioferis.com/VisualRecognitionAndSearch2014/Resources.html

Source Code

Non-exhaustive list of state-of-the-art implementations related to visual recognition and search. There is no warranty for the source code links below – use them at your own risk!

Feature Detection and Description

General Libraries: 

  • VLFeat – Implementation of various feature descriptors (including SIFT, HOG, and LBP) and covariant feature detectors (including DoG, Hessian, Harris Laplace, Hessian Laplace, Multiscale Hessian, Multiscale Harris). Easy-to-use Matlab interface. SeeVLFeat hands-on session training
  • OpenCV – Various implementations of modern feature detectors and descriptors (SIFT, SURF, FAST, BRIEF, ORB, FREAK, etc.)

Fast Keypoint Detectors for Real-time Applications: 

  • FAST – High-speed corner detector implementation for a wide variety of platforms
  • AGAST – Even faster than the FAST corner detector. A multi-scale version of this method is used for the BRISK descriptor (ECCV 2010).

Binary Descriptors for Real-Time Applications: 

  • BRIEF – C++ code for a fast and accurate interest point descriptor (not invariant to rotations and scale) (ECCV 2010)
  • ORB – OpenCV implementation of the Oriented-Brief (ORB) descriptor (invariant to rotations, but not scale)
  • BRISK – Efficient Binary descriptor invariant to rotations and scale. It includes a Matlab mex interface. (ICCV 2011)
  • FREAK – Faster than BRISK (invariant to rotations and scale) (CVPR 2012)

SIFT and SURF Implementations: 

Other Local Feature Detectors and Descriptors: 

  • VGG Affine Covariant features – Oxford code for various affine covariant feature detectors and descriptors.
  • LIOP descriptor – Source code for the Local Intensity order Pattern (LIOP) descriptor (ICCV 2011).
  • Local Symmetry Features – Source code for matching of local symmetry features under large variations in lighting, age, and rendering style (CVPR 2012).

Global Image Descriptors: 

  • GIST – Matlab code for the GIST descriptor
  • CENTRIST – Global visual descriptor for scene categorization and object detection (PAMI 2011)

Feature Coding and Pooling 

  • VGG Feature Encoding Toolkit – Source code for various state-of-the-art feature encoding methods – including Standard hard encoding, Kernel codebook encoding, Locality-constrained linear encoding, and Fisher kernel encoding.
  • Spatial Pyramid Matching – Source code for feature pooling based on spatial pyramid matching (widely used for image classification)

Convolutional Nets and Deep Learning 

  • Caffe – Fast C++ implementation of deep convolutional networks (GPU / CPU / ImageNet 2013 demonstration).
  • EBLearn – C++ Library for Energy-Based Learning. It includes several demos and step-by-step instructions to train classifiers based on convolutional neural networks.
  • Torch7 – Provides a matlab-like environment for state-of-the-art machine learning algorithms, including a fast implementation of convolutional neural networks.
  • Deep Learning – Various links for deep learning software.

Facial Feature Detection and Tracking 

  • IntraFace – Very accurate detection and tracking of facial features (C++/Matlab API).

Part-Based Models 

Attributes and Semantic Features 

Large-Scale Learning 

  • Additive Kernels – Source code for fast additive kernel SVM classifiers (PAMI 2013).
  • LIBLINEAR – Library for large-scale linear SVM classification.
  • VLFeat – Implementation for Pegasos SVM and Homogeneous Kernel map.

Fast Indexing and Image Retrieval 

  • FLANN – Library for performing fast approximate nearest neighbor.
  • Kernelized LSH – Source code for Kernelized Locality-Sensitive Hashing (ICCV 2009).
  • ITQ Binary codes – Code for generation of small binary codes using Iterative Quantization and other baselines such as Locality-Sensitive-Hashing (CVPR 2011).
  • INRIA Image Retrieval – Efficient code for state-of-the-art large-scale image retrieval (CVPR 2011).

Object Detection 

3D Recognition 

Action Recognition 




Datasets

Attributes 

  • Animals with Attributes – 30,475 images of 50 animals classes with 6 pre-extracted feature representations for each image.
  • aYahoo and aPascal – Attribute annotations for images collected from Yahoo and Pascal VOC 2008.
  • FaceTracer – 15,000 faces annotated with 10 attributes and fiducial points.
  • PubFig – 58,797 face images of 200 people with 73 attribute classifier outputs.
  • LFW – 13,233 face images of 5,749 people with 73 attribute classifier outputs.
  • Human Attributes – 8,000 people with annotated attributes. Check also this link for another dataset of human attributes.
  • SUN Attribute Database – Large-scale scene attribute database with a taxonomy of 102 attributes.
  • ImageNet Attributes – Variety of attribute labels for the ImageNet dataset.
  • Relative attributes – Data for OSR and a subset of PubFig datasets. Check also this link for the WhittleSearch data.
  • Attribute Discovery Dataset – Images of shopping categories associated with textual descriptions.

Fine-grained Visual Categorization 

Face Detection 

  • FDDB – UMass face detection dataset and benchmark (5,000+ faces)
  • CMU/MIT – Classical face detection dataset.

Face Recognition 

  • Face Recognition Homepage – Large collection of face recognition datasets.
  • LFW – UMass unconstrained face recognition dataset (13,000+ face images).
  • NIST Face Homepage – includes face recognition grand challenge (FRGC), vendor tests (FRVT) and others.
  • CMU Multi-PIE – contains more than 750,000 images of 337 people, with 15 different views and 19 lighting conditions.
  • FERET – Classical face recognition dataset.
  • Deng Cai’s face dataset in Matlab Format – Easy to use if you want play with simple face datasets including Yale, ORL, PIE, and Extended Yale B.
  • SCFace – Low-resolution face dataset captured from surveillance cameras.

Handwritten Digits 

  • MNIST – large dataset containing a training set of 60,000 examples, and a test set of 10,000 examples.

Pedestrian Detection

Generic Object Recognition 

  • ImageNet – Currently the largest visual recognition dataset in terms of number of categories and images.
  • Tiny Images – 80 million 32×32 low resolution images.
  • Pascal VOC – One of the most influential visual recognition datasets.
  • Caltech 101 / Caltech 256 – Popular image datasets containing 101 and 256 object categories, respectively.
  • MIT LabelMe – Online annotation tool for building computer vision databases.

Scene Recognition

Feature Detection and Description 

Action Recognition

RGBD Recognition 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/117411.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • java中如何定义一个数组「建议收藏」

    java中如何定义一个数组「建议收藏」数组的定义方法 int[]a;//定义一个数组a int[]b=newint[10];//定义一个长度为10的数组b int[]c={7,1,2,3,8};//定义一个数组c,并赋值,其中a[0]=7,a[4]=8; //以数组b为例,长度为10,分别是从b[0]-b[9];…

    2022年7月7日
    17
  • Tracert(traceroute)&Ping 工作原理分析

    Tracert(traceroute)&Ping 工作原理分析一、tracert工作过程分析Tracert命令用IP生存时间(TTL)字段和ICMP错误消息来确定从一个主机到网络上其他主机的路由。首先,tracert送出一个TTL是1的IP数据包到目的地,当路径上的第一个路由器收到这个数据包时,它将TTL减1。此时,TTL变为0,所以该路由器会将此数据包丢掉,并送回一个「ICMPtimeexceeded」消息(

    2022年9月24日
    0
  • django分页器的用法_SQL分页

    django分页器的用法_SQL分页前言当后台返回的数据过多时,我们就要配置分页器,比如一页最多只能展示10条等等,drf中默认配置了3个分页面PageNumberPagination:基础分页器,性能略差LimitOffsetP

    2022年7月31日
    3
  • python视频识别_视频人员行为识别(Action Recognition)

    python视频识别_视频人员行为识别(Action Recognition)一.提出背景目标:给定一段视频,通过分析,得到里面人员的动作行为。问题:可以定义为一个分类问题,通过对预定的样本进行分类训练,解决一个输入视频的多分类问题。这里提出的问题是简单的图片(视频)分类问题,该问题的前提条件是:场景目标为单人,并且占据图片比较大的比例,如下图所示:还有一类问题是基于行人检测,去估计行人的姿态和动作,暂时不在本篇讨论范围内。二.行为识别的发展和其他领域一样,我们还是先从…

    2022年6月3日
    32
  • css3颜色渐变_灰色渐变图片

    css3颜色渐变_灰色渐变图片Document*{margin:0;padding:0}.words{font-size:25px;font-weight:700;text-align:center;margin:20px0}div{width:300px;height:150px;margin:0auto10px;border:1pxsolid#ddd;}.box1{background:-webkit-linea…

    2025年7月20日
    0
  • decode encode区别_python encode函数

    decode encode区别_python encode函数encode:编码decode:解码python内部编码方式为unicode,decode将其他编码方式转换成unicode编码方式,encode将unicode转换成其他编码方式。因此unicode相当于一个中转:(1)decode->unicode->encode(2)encode->unicode->decode字符串在Python内部的表示是unicode编码,因此,在做编码转换时,通常需要以unicode作为中间编码,即先将其他编码的字符…

    2022年10月7日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号