离散系统的变换域

离散系统的变换域

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

一些实际信号不存在傅立叶变换。正如变换引入拉普拉斯。加阻尼因子满足条件。

从拉普拉斯到z兑换,它可以被理解为映射到一个离散连续。

z转型是一个无穷级数,还有就是无穷级数的问题域的融合。

收敛可以理解为面积区域是傅立叶存在变换。

z变换求反变换的部分分式法有函数能够计算:[r,p,C] = residuez(b,a)

当中b和a为按z-1升幂序列排列的多项式的分子和坟墓的系数向量。

r为各个根的留数向量;p为极点向量。

C先无论。

也能够用h = impz(b,a,N)。这个之前有介绍过,就是已知多项式分子分母求h(n)的。也就是说能够来求反变换。

至于求解差分方程。之前介绍过filter(b,a,x,xic)。xic是初始条件输入序列。

当中初始条件计算:xic = filtic(b,a,Y,X)

b和a是分子分母系数数组。

Y和X是初始条件数组。Y=[y(-1),y(-2),…]。X=[x(-1),x(-2)…]。

接下来讲讲z平面上的谱分析。

之前学过DTFT的几何画法。能够发现,假设极点靠单位圆非常近。频率特性在靠近极点附近会出现大的谐振峰。分母迅速减小。

因为稳定性要求,极点要在单位圆内。这样阐释的都是负相移。

当零点也在单位圆内,系统的负相移最小(零点可产生正相移抵消),称最小相位系统。

非单位圆周上的频谱分析。

比如语音信号处理中,经常须要知道极点所相应的频率。

假设极点里单位圆较远。则单位圆上的频谱就非常平滑。

假设使採样点轨迹沿一条接近这些极点的弧线或圆周进行,则採样结果会在极点相应的频率上出现明显的尖峰。

关于理想滤波器,其脉冲响应是sa函数。为了因果,仅仅能截取n>=0部分。

考虑到线性相位要求,截取的序列必须对称。

为了使更接近于理想情况,应该尽可能添加延迟时间,加大截取长度(阶数)。

截取的序列越短。幅频特性与理想情况区别越大。

截取的序列若是对称的,则相频为线性。若不正确称,相频特性则非线性。

用零极点分析滤波器。

规律是:离零点越近的频率,幅度越小。

离极点越近的频率,幅度越大。

由z = eiw,z=-1离低频最远。因此取零点z=-1能够得到更高的低频幅度。

z=-1后,对一阶低通滤波器,通带宽度与极点a的关系近似是wp = 1-a。注意wp是数字频率。

二阶则更加灵活。为了滤波或者陷波,能够直接把零点配置在这个角频率的单位圆上ejw0。

同理,梳状滤波器就是把零点均匀分布在单位圆上。极点位置非常靠近零点位置。能将陷波特性做的非常窄。

只是陷阱坏相频特性,通常级联全通滤波器校正。

版权声明:本文博客原创文章,博客,未经同意,不得转载。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/117486.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 用python编写猴子吃桃问题_人工智能猴子摘香蕉

    用python编写猴子吃桃问题_人工智能猴子摘香蕉一个房间里,天花板上挂有一串香蕉,有一只猴子可在房间里任意活动(到处走动,推移箱子,攀登箱子等)。设房间里还有一只可被猴子移动的箱子,且猴子登上箱子时才能摘到香蕉,问猴子在某一状态下(设猴子位置为A,香蕉位置在B,箱子位置为C),如何行动可摘取到香蕉。此问题的前提是猴子只有站在箱子上才能拿到香蕉,因此,需要首先让猴子找到箱子,再找到香蕉,并将箱子搬到香蕉下面。2.1使用语义网络实现猴子摘香蕉的知识表示2.2用java实现猴子摘香蕉Monkey类:12345678910111213141516171

    2022年9月25日
    3
  • Solidity String转byte32 byte转String

    Solidity String转byte32 byte转String///string类型转化为bytes32型转functionstringToBytes32(stringmemorysource)constantinternalreturns(bytes32result){assembly{result:=mload(add(source,32))}}///bytes32类型转化为string型转functionbytes32ToString(b.

    2022年6月16日
    191
  • Linux常用下载工具推荐「建议收藏」

    Linux常用下载工具推荐「建议收藏」[color="#02368d"]Linux常用下载工具推荐转自:http://doc.zoomquiet.org/data/20060730210451/index.html

    2022年7月1日
    67
  • SublimeText3 常用快捷键!for mac 清晰明了!

    SublimeText3 常用快捷键!for mac 清晰明了!符号说明 符号 说明 ⌘ command ⌃ control ⌥ option ⇧ shift ↩ enter ⌫ delete 打开/关闭/前往 快捷键 功能

    2022年5月24日
    42
  • java md5加密源码_javaMD5加密源码

    java md5加密源码_javaMD5加密源码packageutil;importjava.security.MessageDigest;importjava.security.NoSuchAlgorithmException;publicclassMD5Tool{/***该方法将指定的字符串用MD5算法加密后返回。*@params*@return*/publicstaticStringgetMD5Encoding(…

    2022年7月14日
    18
  • tcp握手失败怎么办_TCP协议握手

    tcp握手失败怎么办_TCP协议握手大家好,我是小林。之前收到个读者的问题,对于TCP三次握手和四次挥手的一些疑问:第一次握手,如果客户端发送的SYN一直都传不到被服务器,那么客户端是一直重发SYN到永久吗?客户端停止重发SYN的时机是什么?第三次握手,如果服务器永远不会收到ACK,服务器就永远都留在Syn-Recv状态了吗?退出此状态的时机是什么?第三次挥手,如果客户端永远收不到FIN,ACK,客户端永远停留在Fin-Wait-2状态了吗?退出此状态时机是什么时候呢?第四次挥手,如果服务器永远收不到A

    2025年9月2日
    8

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号