UVA – 12130 Summits

UVA – 12130 Summits

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

Description

Download as PDF

Problem G – Summits

Time limit: 8 seconds

You recently started working for the largest map drawing company in theNetherlands. Part of your job is to determine what the summits in aparticular landscape are. Unfortunately, it is not so easy to determinewhich points are summits and which are not, because we do not want tocall a small hump a summit. For example look at the landscape given bythe sample input.

We call the points of height 3 summits, since there are no higherpoints. But although the points of height 2, which are to theleft of the summit of height 3, are all higher than or equal totheir immediate neighbours, we do notwant to call them summits, because we can reach a higher point fromthem without going to low (the summits of height 3). In contrast,we do want to call the area of height 2 on the right a summit, sinceif we would want to walk to the summit of height 3, we first have todescend to a point with height 0.

After the above example, we introduce the concept of a d-summit. Apoint, with height h, is a d-summit if and only if it isimpossible to reach a higher point without going through an area withheight smaller than or equal to hd.

The problem is, given a rectangular grid of integer heights and aninteger d, to find the number of d-summits.

Input

On the first line one positive number: the number of testcases, atmost 100. After that per testcase:

  • One line with three integers 1 ≤ h ≤ 500, 1 &le w ≤ 500 and 1 ≤ d ≤ 1000000000. h and w are the dimensions of the map. d is as defined in the text.
  • h lines with w integers, where the xth integer on the yth line denotes the height 0 ≤ h ≤ 1000000000 of the point (x, y).

Output

Per testcase:

  • One line with the number of summits.

Sample Input

1
6 10 2
0 0 0 0 0 0 0 0 0 0
0 1 2 1 1 1 1 0 1 0
0 2 1 2 1 3 1 0 0 0
0 1 2 1 3 3 1 1 0 0
0 2 1 2 1 1 1 0 2 0
0 0 0 0 0 0 0 0 0 0

Sample Output

4

The 2007 ACM Northwestern European Programming Contest

题意:多么费解的题目啊,找顶点,假设一个点是最高的话那么就是顶点。假设不是的话,可是它到比它到的点的路径中假设有<=h-d(h为该点的高度)那么就不能去,那么它就是顶点

思路:首先找个性质:假设A->B,C->B,假设HA>HC,由于HA-d>HC-d,那么C->A,所以我们先按高度排序,然后逐个BFS,假设它的周围能找到跟它一样高的点。那么这些点都是顶点。假设遇到已经被较高找到的点。那么它就也能够到那个较高的点。那么它就不是顶点

#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <queue>
using namespace std;
const int MAXN = 510;

struct node {
	int x, y, h;
	node(int _x = 0, int _y = 0, int _h = 0) {
		x = _x;
		y = _y;
		h = _h;
	}
} arr[MAXN*MAXN];
int map[MAXN][MAXN];
int vis[MAXN][MAXN];
int n, m, d;
int cnt;
int dx[4]={1, -1, 0, 0};
int dy[4]={0, 0, 1, -1};
queue<node> q;

int cmp(node a, node b) {
	return a.h > b.h;
}

void cal() {
	memset(vis, -1, sizeof(vis));
	int ans = 0;
	while (!q.empty())
		q.pop();
	for (int i = 0; i < cnt; i++) {
		node cur = arr[i];
		if (vis[cur.x][cur.y] != -1)
			continue;
		int flag = 1;
		int bound = cur.h - d;
		int top = cur.h;
		q.push(cur);
		int tot = 1;
		while (!q.empty()) {
			cur = q.front();
			q.pop();
			vis[cur.x][cur.y] = top;
			for (int i = 0; i < 4; i++) {
				int nx = cur.x + dx[i];
				int ny = cur.y + dy[i];
				if (nx < 1 || ny < 1 || nx > n || ny > m)
					continue;
				if (map[nx][ny] <= bound)
					continue;
				if (vis[nx][ny] != -1) {
					if (vis[nx][ny] != top)
						flag = 0;
					continue;
				}
				node tmp;
				tmp.x = nx, tmp.y = ny, tmp.h = map[nx][ny];
				vis[nx][ny] = top;
				if (tmp.h == top) 
					tot++;
				q.push(tmp);
			}
		}
		if (flag) 
			ans += tot;
	}
	printf("%d\n", ans);
}

int main() {
	int t;
	scanf("%d", &t);
	while (t--) {
		scanf("%d%d%d", &n, &m, &d);
		cnt = 0;
		for (int i = 1; i <= n; i++)
			for (int j = 1; j <= m; j++) {
				scanf("%d", &map[i][j]);
				arr[cnt++] = node(i, j, map[i][j]);
			}
		sort(arr, arr+cnt, cmp);
		cal();
	}
	return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/117669.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • ubuntu入门

    Ubuntu的发音Ubuntu,源于非洲祖鲁人和科萨人的语言,发作oo-boon-too的音。了解发音是有意义的,您不是第一个为此困惑的人,当然,也不会是最后一个:)大多数的美国人读ubun

    2021年12月27日
    32
  • 简单Web应用框架设计

    简单Web应用框架设计

    2021年7月21日
    48
  • hive with as 语法

    hive with as 语法

    2021年11月27日
    54
  • SQL中的左连接与右连接,内连接有什么区别

    SQL中的左连接与右连接,内连接有什么区别例子,相信你一看就明白,不需要多说A表(a1,b1,c1)B表(a2,b2)左连接:selectA.*,B.*fromAleftouterjoinBon(A.a1=B.a2)结果是:右连接:selectA.*,B.*fromArightouterjoinBon(A.a1=B.a2)结果是:内连接:自然联结:…

    2022年9月19日
    0
  • 哈夫曼树

    哈夫曼树一、哈夫曼树的概念和定义 什么是哈夫曼树?让我们先举一个例子。判定树:       在很多问题的处理过程中,需要进行大量的条件判断,这些判断结构的设计直接影响着程序的执行效率。例如,编制一个程序,将百分制转换成五个等级输出。大家可能认为这个程序很简单,并且很快就可以用下列形式编写出来:  if(score<60) cout<<"Bad"<

    2022年6月11日
    32
  • paraphrase和translation的区别_translating和interpreting的区别

    paraphrase和translation的区别_translating和interpreting的区别PreTranslateMessage是消息在送给TranslateMessage函数之前被调用的,绝大多数本窗口的消息都要通过这里,比较常用,当需要在MFC之前处理某些消息时,常常要在这里添加代码.                MFC消息控制流最具特色的地方是CWnd类的虚拟函数PreTranslateMessage(),通过重载这个函数,可以改变MFC的消息控制流程,甚至可以

    2022年9月13日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号