UVA – 12130 Summits

UVA – 12130 Summits

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

Description

Download as PDF

Problem G – Summits

Time limit: 8 seconds

You recently started working for the largest map drawing company in theNetherlands. Part of your job is to determine what the summits in aparticular landscape are. Unfortunately, it is not so easy to determinewhich points are summits and which are not, because we do not want tocall a small hump a summit. For example look at the landscape given bythe sample input.

We call the points of height 3 summits, since there are no higherpoints. But although the points of height 2, which are to theleft of the summit of height 3, are all higher than or equal totheir immediate neighbours, we do notwant to call them summits, because we can reach a higher point fromthem without going to low (the summits of height 3). In contrast,we do want to call the area of height 2 on the right a summit, sinceif we would want to walk to the summit of height 3, we first have todescend to a point with height 0.

After the above example, we introduce the concept of a d-summit. Apoint, with height h, is a d-summit if and only if it isimpossible to reach a higher point without going through an area withheight smaller than or equal to hd.

The problem is, given a rectangular grid of integer heights and aninteger d, to find the number of d-summits.

Input

On the first line one positive number: the number of testcases, atmost 100. After that per testcase:

  • One line with three integers 1 ≤ h ≤ 500, 1 &le w ≤ 500 and 1 ≤ d ≤ 1000000000. h and w are the dimensions of the map. d is as defined in the text.
  • h lines with w integers, where the xth integer on the yth line denotes the height 0 ≤ h ≤ 1000000000 of the point (x, y).

Output

Per testcase:

  • One line with the number of summits.

Sample Input

1
6 10 2
0 0 0 0 0 0 0 0 0 0
0 1 2 1 1 1 1 0 1 0
0 2 1 2 1 3 1 0 0 0
0 1 2 1 3 3 1 1 0 0
0 2 1 2 1 1 1 0 2 0
0 0 0 0 0 0 0 0 0 0

Sample Output

4

The 2007 ACM Northwestern European Programming Contest

题意:多么费解的题目啊,找顶点,假设一个点是最高的话那么就是顶点。假设不是的话,可是它到比它到的点的路径中假设有<=h-d(h为该点的高度)那么就不能去,那么它就是顶点

思路:首先找个性质:假设A->B,C->B,假设HA>HC,由于HA-d>HC-d,那么C->A,所以我们先按高度排序,然后逐个BFS,假设它的周围能找到跟它一样高的点。那么这些点都是顶点。假设遇到已经被较高找到的点。那么它就也能够到那个较高的点。那么它就不是顶点

#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <queue>
using namespace std;
const int MAXN = 510;

struct node {
	int x, y, h;
	node(int _x = 0, int _y = 0, int _h = 0) {
		x = _x;
		y = _y;
		h = _h;
	}
} arr[MAXN*MAXN];
int map[MAXN][MAXN];
int vis[MAXN][MAXN];
int n, m, d;
int cnt;
int dx[4]={1, -1, 0, 0};
int dy[4]={0, 0, 1, -1};
queue<node> q;

int cmp(node a, node b) {
	return a.h > b.h;
}

void cal() {
	memset(vis, -1, sizeof(vis));
	int ans = 0;
	while (!q.empty())
		q.pop();
	for (int i = 0; i < cnt; i++) {
		node cur = arr[i];
		if (vis[cur.x][cur.y] != -1)
			continue;
		int flag = 1;
		int bound = cur.h - d;
		int top = cur.h;
		q.push(cur);
		int tot = 1;
		while (!q.empty()) {
			cur = q.front();
			q.pop();
			vis[cur.x][cur.y] = top;
			for (int i = 0; i < 4; i++) {
				int nx = cur.x + dx[i];
				int ny = cur.y + dy[i];
				if (nx < 1 || ny < 1 || nx > n || ny > m)
					continue;
				if (map[nx][ny] <= bound)
					continue;
				if (vis[nx][ny] != -1) {
					if (vis[nx][ny] != top)
						flag = 0;
					continue;
				}
				node tmp;
				tmp.x = nx, tmp.y = ny, tmp.h = map[nx][ny];
				vis[nx][ny] = top;
				if (tmp.h == top) 
					tot++;
				q.push(tmp);
			}
		}
		if (flag) 
			ans += tot;
	}
	printf("%d\n", ans);
}

int main() {
	int t;
	scanf("%d", &t);
	while (t--) {
		scanf("%d%d%d", &n, &m, &d);
		cnt = 0;
		for (int i = 1; i <= n; i++)
			for (int j = 1; j <= m; j++) {
				scanf("%d", &map[i][j]);
				arr[cnt++] = node(i, j, map[i][j]);
			}
		sort(arr, arr+cnt, cmp);
		cal();
	}
	return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/117669.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • singTask和FLAG_ACTIVITY_CLEAR_TOP的区别

    singTask和FLAG_ACTIVITY_CLEAR_TOP的区别假设所有的activity启动方式是standard,两者的区别就是1.intent中的flag为FLAG_ACTIVITY_CLEAR_TOP时,将指定activity上面的其他activity出栈,指定activity位于栈顶,但是可以使用已有的实例或者重新创建一个实例,取决于是否加一个FLAG_ACTIVITY_SINGLE_TOP标志如果加了,则不会重建实例,在onNewIntent()

    2022年7月17日
    13
  • startActivityForResult 参数限制[通俗易懂]

    startActivityForResult 参数限制[通俗易懂]publicvoidstartActivityForResult(Intentintent,intrequestCode)ParametersintentTheintenttostart.requestCodeIf>=0,thiscodewillbereturnedinonActivityResult()whentheactivity

    2022年7月11日
    15
  • 使用Oracle DBLink进行数据库之间对象的訪问操作

    使用Oracle DBLink进行数据库之间对象的訪问操作

    2022年2月6日
    53
  • CultureInfo 类

    CultureInfo 类CultureInfo类 提供有关特定区域性的信息(如区域性的名称、书写系统和使用的日历)以及如何设置日期和排序字符串的格式。命名空间:System.Globalization程序集:mscorlib(在mscorlib.dll中)varExpCollDivStr=ExpCollDivStr;ExpCollDivStr=ExpCollDiv

    2022年6月19日
    28
  • 邓白氏编码申请条件_苹果邓白氏码申请教程

    邓白氏编码申请条件_苹果邓白氏码申请教程一、填写申请表单申请苹果开发者账号途中,我们会用到邓白氏编码,申请邓白氏编码的入口自然也是在申请苹果开发者账号途中进入。1.登录AppID登录入口:https://developer.apple.com/account/.公司开发者账号一般都是由老板来管理的,所以使用老板的个人AppID登录就好了,没有就让老板申请一个。登录进来后进行以下操作:选择Company/Origani

    2025年5月31日
    2
  • fedora14下载_无法获取url

    fedora14下载_无法获取url备忘:http://mirrors.163.com/fedora/releases/12/Fedora/i386/iso/

    2022年9月20日
    5

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号