FFT算法的物理意义

FFT算法的物理意义

大家好,又见面了,我是全栈君,祝每个程序员都可以多学几门语言。

FFT是离散傅立叶变换的高速算法,能够将一个信号变换
到频域。有些信号在时域上是非常难看出什么特征的,可是如
果变换到频域之后,就非常easy看出特征了。这就是非常多信号
分析採用FFT变换的原因。另外,FFT能够将一个信号的频谱
提取出来,这在频谱分析方面也是经经常使用的。

    尽管非常多人都知道FFT是什么,能够用来做什么,怎么去
做,可是却不知道FFT之后的结果是什意思、怎样决定要使用
多少点来做FFT。

    如今圈圈就依据实际经验来说说FFT结果的详细物理意义。
一个模拟信号,经过ADC採样之后,就变成了数字信号。採样
定理告诉我们,採样频率要大于信号频率的两倍,这些我就
不在此罗嗦了。

    採样得到的数字信号,就能够做FFT变换了。N个採样点,
经过FFT之后,就能够得到N个点的FFT结果。为了方便进行FFT
运算,通常N取2的整数次方。

    如果採样频率为Fs,信号频率F,採样点数为N。那么FFT
之后结果就是一个为N点的复数。每一个点就相应着一个频率
点。这个点的模值,就是该频率值下的幅度特性。详细跟原始
信号的幅度有什么关系呢?如果原始信号的峰值为A,那么FFT
的结果的每一个点(除了第一个点直流分量之外)的模值就是A
的N/2倍。而第一个点就是直流分量,它的模值就是直流分量
的N倍。而每一个点的相位呢,就是在该频率下的信号的相位。
第一个点表示直流分量(即0Hz),而最后一个点N的再下一个
点(实际上这个点是不存在的,这里是如果的第N+1个点,也
能够看做是将第一个点分做两半分,还有一半移到最后)则表示
採样频率Fs,这中间被N-1个点平均分成N等份,每一个点的频率
依次添加�。比如某点n所表示的频率为:Fn=(n-1)*Fs/N。
由上面的公式能够看出,Fn所能分辨到频率为为Fs/N,如果
採样频率Fs为1024Hz,採样点数为1024点,则能够分辨到1Hz。
1024Hz的採样率採样1024点,刚好是1秒,也就是说,採样1秒
时间的信号并做FFT,则结果能够分析到1Hz,如果採样2秒时
间的信号并做FFT,则结果能够分析到0.5Hz。如果要提高频率
分辨力,则必须添加�採样点数,也即採样时间。频率分辨率和
採样时间是倒数关系。
  如果FFT之后某点n用复数a+bi表示,那么这个复数的模就是
An=根号a*a+b*b,相位就是Pn=atan2(b,a)。依据以上的结果,
就能够计算出n点(n≠1,且n<=N/2)相应的信号的表达式为:
An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。
对于n=1点的信号,是直流分量,幅度即为A1/N。
    因为FFT结果的对称性,通常我们仅仅使用前半部分的结果,
即小于採样频率一半的结果。

    好了,说了半天,看着公式也晕,以下圈圈以一个实际的
信号来做说明。

    如果我们有一个信号,它含有2V的直流分量,频率为50Hz、
相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、
相位为90度、幅度为1.5V的交流信号。用数学表达式就是例如以下:

S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)

    式中cos參数为弧度,所以-30度和90度要分别换算成弧度。
我们以256Hz的採样率对这个信号进行採样,总共採样256点。
依照我们上面的分析,Fn=(n-1)*Fs/N,我们能够知道,每两个
点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号
有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、
第76个点上出现峰值,其他各点应该接近0。实际情况怎样呢?
我们来看看FFT的结果的模值如图所看到的。

FFT算法的物理意义

                      图1 FFT结果
    从图中我们能够看到,在第1点、第51点、和第76点附近有
比較大的值。我们分别将这三个点附近的数据拿上来细看:
1点: 512+0i
2点: -2.6195E-14 – 1.4162E-13i 
3点: -2.8586E-14 – 1.1898E-13i

50点:-6.2076E-13 – 2.1713E-12i
51点:332.55 – 192i
52点:-1.6707E-12 – 1.5241E-12i

75点:-2.2199E-13 -1.0076E-12i
76点:3.4315E-12 + 192i
77点:-3.0263E-14 +7.5609E-13i
  
    非常明显,1点、51点、76点的值都比較大,它附近的点值
都非常小,能够觉得是0,即在那些频率点上的信号幅度为0。
接着,我们来计算各点的幅度值。分别计算这三个点的模值,
结果例如以下:
1点: 512
51点:384
76点:192
    依照公式,能够计算出直流分量为:512/N=512/256=2;
50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的
幅度为192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来
的幅度是正确的。
    然后再来计算相位信息。直流信号没有相位可言,不用管
它。先计算50Hz信号的相位,atan2(-192, 332.55)=-0.5236,
结果是弧度,换算为角度就是180*(-0.5236)/pi=-30.0001。再
计算75Hz信号的相位,atan2(192, 3.4315E-12)=1.5708弧度,
换算成角度就是180*1.5708/pi=90.0002。可见,相位也是对的。
依据FFT结果以及上面的分析计算,我们就能够写出信号的表达
式了,它就是我们開始提供的信号。

    总结:如果採样频率为Fs,採样点数为N,做FFT之后,某
一点n(n从1開始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值
除以N/2就是相应该频率下的信号的幅度(对于直流信号是除以
N);该点的相位即是相应该频率下的信号的相位。相位的计算
可用函数atan2(b,a)计算。atan2(b,a)是求坐标为(a,b)点的角
度值,范围从-pi到pi。要精确到xHz,则须要採样长度为1/x秒
的信号,并做FFT。要提高频率分辨率,就须要添加�採样点数,
这在一些实际的应用中是不现实的,须要在较短的时间内完毕
分析。解决问题的方法有频率细分法,比較简单的方法是
採样比較短时间的信号,然后在后面补充一定数量的0,使其长度
达到须要的点数,再做FFT,这在一定程度上可以提高频率分辨力。
详细的频率细分法可參考相关文献。

[附录:本測试数据使用的matlab程序]
close all; %先关闭全部图片
Adc=2;  %直流分量幅度
A1=3;   %频率F1信号的幅度
A2=1.5; %频率F2信号的幅度
F1=50;  %信号1频率(Hz)
F2=75;  %信号2频率(Hz)
Fs=256; %採样频率(Hz)
P1=-30; %信号1相位(度)
P2=90;  %信号相位(度)
N=256;  %採样点数
t=[0:1/Fs:N/Fs]; %採样时刻

%信号
S=Adc+A1*cos(2*pi*F1*t+pi*P1/180)+A2*cos(2*pi*F2*t+pi*P2/180);
%显示原始信号
plot(S);
title(‘原始信号’);

figure;
Y = fft(S,N); %做FFT变换
Ayy = (abs(Y)); %取模
plot(Ayy(1:N)); %显示原始的FFT模值结果
title(‘FFT 模值’);

figure;
Ayy=Ayy/(N/2);   %换算成实际的幅度
Ayy(1)=Ayy(1)/2;
F=([1:N]-1)*Fs/N; %换算成实际的频率值
plot(F(1:N/2),Ayy(1:N/2));   %显示换算后的FFT模值结果
title(‘幅度-频率曲线图’);

figure;
Pyy=[1:N/2];
for i=1:N/2
 Pyy(i)=phase(Y(i)); %计算相位
 Pyy(i)=Pyy(i)*180/pi; %换算为角度
end;
plot(F(1:N/2),Pyy(1:N/2));   %显示相位图
title(‘相位-频率曲线图’);

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/118225.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 中兴新支点Linux国产操作系统安装windows字体的方法「建议收藏」

    中兴新支点操作系统是一款非常好用易上手的国产操作系统,重易用体验和美观设计,因此对于大多数用户来说,它易用安装和使用,还能够很好的代替Windows系统进行工作与娱乐。用Windows的用户都知道,在使用过程中经常要用到各种字体,那中兴新支点国产操作系统如何安装这些字体呢,小编给大家整理了下面的教程。第一步:将Windows下喜欢的字体文件copy到一个文件夹中,例如将Windows…

    2022年4月9日
    63
  • Django(53)二次封装Response

    Django(53)二次封装Response前言有时候我们使用drf的Response,会发现默认返回的格式不太友好,每次我们都需要写入以下的格式returnResponse({"status":0,"

    2022年7月30日
    8
  • Scrapy常用命令建议收藏

    scrapy全局命令要想了解在scrapy中由哪些全局命令,可以在不进入scrapy爬虫项目目录的情况下运行scrapy-h(1)fetch命令fetch命令主要用来显示爬虫爬取的过程,如果

    2021年12月19日
    56
  • 世界上公认最快的学习法 – 弗曼学习法

    世界上公认最快的学习法 – 弗曼学习法诺贝尔物理学奖得主-理查德·弗曼的学习方法,是世界上公认最快的学习方法,主要有四个步骤:1、选择一个你想要理解的知识;2、设想一下,你要向别人传授这个知识;3、如果过程中出现了问题,就重新回顾这个知识;4、让你的讲解越来越简单易懂。转载于:https://www.cnblogs.com/javalyy/p/10648980.html…

    2022年5月1日
    45
  • acwing-1088旅行问题

    acwing-1088旅行问题原题链接John 打算驾驶一辆汽车周游一个环形公路。公路上总共有 n 个车站,每站都有若干升汽油(有的站可能油量为零),每升油可以让汽车行驶一千米。John 必须从某个车站出发,一直按顺时针(或逆时针)方向走遍所有的车站,并回到起点。在一开始的时候,汽车内油量为零,John 每到一个车站就把该站所有的油都带上(起点站亦是如此),行驶过程中不能出现没有油的情况。任务:判断以每个车站为起点能否按条件成功周游一周。输入格式第一行是一个整数 n,表示环形公路上的车站数;接下来 n 行,每行两个整数

    2022年8月9日
    5
  • Linux系统负载LoadAverage详解

    Linux系统负载LoadAverage详解运维工程师在日常运维中经常使用w、top、uptime等命令来查看系统当前运行的负载情况。那么作为运维工程师是如何通过以上命令来判断系统当前负载是否已经达到极限了呢?为此笔者总结了一下如何通过loadaverage返回的数据来判断系统运行情况。什么是Load?什么是LoadAverage?Load用最通俗的语言说就是当前cpu需要干的工作量的多少。简单的说是进程队列的长度。

    2022年7月17日
    14

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号