CNN做序列标注问题(tensorflow)

CNN做序列标注问题(tensorflow)

一、搭建简单的CNN做序列标注代码

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
    
  
TIME_STEPS = 15# backpropagation through time 的time_steps
BATCH_SIZE = 1#50
INPUT_SIZE = 1 # x数据输入size
LR = 0.05  # learning rate
num_tags = 2 
# 定义一个生成数据的 get_batch function:
def get_batch():
    xs = np.array([[[[2], [3], [4], [5], [5], [5], [1], [5], [3], [2], [5], [5], [5], [3], [5]]]])
    res = np.array([[0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1]])
    ys = np.zeros([1,TIME_STEPS,2])
    for i in range(TIME_STEPS):
        if(res[0,i] == 0):
            ys[0,i,0] = 1
            ys[0,i,1] = 0
        else:
            ys[0,i,0] = 0
            ys[0,i,1] = 1
        
    return [xs, res,ys]
    
# 定义 CNN 的主体结构
class CNN(object):
    def __init__(self, n_steps, input_size, num_tags, batch_size):
        self.n_steps = n_steps
        self.input_size = input_size
        self.num_tags = num_tags
        self.batch_size = batch_size
        #卷积神将网络的输入:[batch, in_height, in_width, in_channels],在自然语言处理中height为1
        self.xs = tf.placeholder(tf.float32, [self.batch_size,1, self.n_steps, self.input_size], name='xs')
        #做序列标注,第二维对应好输入的n_steps,相当于每个时刻的输入都有一个输出
        self.ys = tf.placeholder(tf.int32, [self.batch_size, self.n_steps,self.num_tags], name='ys')#
        
        self.featureNum = 10#提取10个特征
        
        #[卷积核的高度,卷积核的宽度,图像通道数,卷积核个数]
        W_conv1 = self.weight_variable([1,3,1,self.featureNum])#提取10个特征
        #对应10个卷积核输出
        b_conv1 = self.bias_varibale([self.featureNum]) 
    
        #卷积操作
        layer_conv1  = tf.nn.conv2d(self.xs, W_conv1,strides=[1, 1, 1, 1],padding="SAME",) + b_conv1
        #激励层
        layer_conv1  = tf.nn.relu(layer_conv1)
        #最大值池化  本处去除池化层为了后续计算简便
        #layer_pool1  = tf.nn.max_pool(layer_conv1,
        #                              [1, 1, 3, 1],[1,1,1,1],padding='VALID') 
        layer_pool1 = layer_conv1

        # 全连接层  映射到self.n_steps x self.num_tags
        layer_pool1 = tf.reshape(layer_pool1,[self.n_steps,self.featureNum])
        W_fc1  = self.weight_variable([self.featureNum,self.num_tags])
        b_fc1  = self.bias_varibale([self.num_tags])
        h_fc1  = tf.matmul(layer_pool1, W_fc1) + b_fc1
        #激励层
        h_fc1 = tf.nn.relu(h_fc1)
        #softmax 归一化
        self.y_conv = tf.nn.softmax(h_fc1)        
        self.label = tf.reshape(self.ys,[self.n_steps,2])
        self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=self.label, logits=self.y_conv))
        #梯度下降
        self.train_op = tf.train.AdamOptimizer(LR).minimize(self.cost)      
        self.pred = tf.argmax(self.y_conv,axis = 1)
       
    def weight_variable(self,shape):
        initial=tf.truncated_normal(shape, mean=0.0, stddev=0.1)
        return tf.Variable(initial)
    def bias_varibale(self,shape):
        initial=tf.constant(0,1,shape=shape)
        return tf.Variable(initial)   
    
# 训练CNN
if __name__ == '__main__':
       
    # 搭建 CNN 模型
    model = CNN(TIME_STEPS, INPUT_SIZE, num_tags, BATCH_SIZE)
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
      
    # matplotlib可视化
    plt.ion()  # 设置连续 plot
    plt.show()  
    # 训练多次
    for i in range(150):
        xs, res,ys = get_batch()  # 提取 batch data
        # 初始化 data
        feed_dict = {
            model.xs: xs,
            model.ys: ys,
        }        
        # 训练
        _, cost,pred = sess.run(
            [model.train_op, model.cost,  model.pred],
            feed_dict=feed_dict)

    
        # plotting
  
        x = xs.reshape(-1,1)
        r = res.reshape(-1, 1)
        p = pred.reshape(-1, 1)
          
        x = range(len(x))
          
        plt.clf()
        plt.plot(x, r, 'r', x, p, 'b--')
        plt.ylim((-1.2, 1.2))
        plt.draw()
        plt.pause(0.3)  # 每 0.3 s 刷新一次
          
        # 打印 cost 结果
        if i % 20 == 0:
            print('cost: ', round(cost, 4))

  得到结果:

<span>CNN做序列标注问题(tensorflow)</span>

 

二、CNN主要知识点

  待整理。

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/119442.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • SpringCloud系列之API网关(Gateway)服务Zuul

    SpringCloud系列之API网关(Gateway)服务Zuul

    2020年11月19日
    182
  • getopt使用

    getopt使用参考:http://www.gnu.org/software/libc/manual/html_node/Example-of-Getopt.htmlhttp://en.wikipedia.org/wiki/Getopthttp://www.lemoda.net/c/getopt/http://www.ibm.com/developerworks/aix/library/au-un…

    2022年5月4日
    34
  • dnf自己搭建服务器_dnf搭建教程

    dnf自己搭建服务器_dnf搭建教程DNF游戏私服搭建过程准备资源:1.黑岩客户端2.服务器启动所需资源3.1核2G服务器一台(版本centos5.8)(记得开放全部端口)服务端配置:步骤一:切换源为163的源:wget-O/etc/yum.repos.d/CentOS-Base.repohttp://mirrors.163.com//.help/CentOS5-Base-163.repo上传资源到服务器的根目录cd/上传文件步骤二:安装glibc.i386,xulrunner.i386,libXt

    2022年10月5日
    2
  • HTML—标签总结

    HTML—标签总结

    2021年10月2日
    43
  • Redis 缓存穿透 + 缓存雪崩 + 缓存击穿的原因和解决方案「建议收藏」

    Redis 缓存穿透 + 缓存雪崩 + 缓存击穿的原因和解决方案「建议收藏」在生产环境中,会因为很多的原因造成访问请求绕过了缓存,都需要访问数据库持久层,虽然对Redsi缓存服务器不会造成影响,但是数据库的负载就会增大,使缓存的作用降低一、缓存穿透缓存穿透是指查询一个根本不存在的数据,缓存层和持久层都不会命中。在日常工作中出于容错的考虑,如果从持久层查不到数据则不写入缓存层,缓存穿透将导致不存在的数据每次请求都要到持久层去查询,失去了缓…

    2022年6月15日
    26
  • 配置监听_1521端口占用问题

    配置监听_1521端口占用问题声明:原创作品,出自“深蓝的blog”博客,欢迎转载,转载时请务必注明出处,否则追究版权法律责任。深蓝的blog: 前提回现修改了主机名,由hyldb修改为hyl。问题现象配置监听,警告提示,如下所示:解决方法1、检查1521端口[root@hyl~]#netstat-a–查看端口占用情况,查明1521端口并未被占用ActiveInte

    2022年6月5日
    43

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号