CNN做序列标注问题(tensorflow)

CNN做序列标注问题(tensorflow)

一、搭建简单的CNN做序列标注代码

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
    
  
TIME_STEPS = 15# backpropagation through time 的time_steps
BATCH_SIZE = 1#50
INPUT_SIZE = 1 # x数据输入size
LR = 0.05  # learning rate
num_tags = 2 
# 定义一个生成数据的 get_batch function:
def get_batch():
    xs = np.array([[[[2], [3], [4], [5], [5], [5], [1], [5], [3], [2], [5], [5], [5], [3], [5]]]])
    res = np.array([[0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1]])
    ys = np.zeros([1,TIME_STEPS,2])
    for i in range(TIME_STEPS):
        if(res[0,i] == 0):
            ys[0,i,0] = 1
            ys[0,i,1] = 0
        else:
            ys[0,i,0] = 0
            ys[0,i,1] = 1
        
    return [xs, res,ys]
    
# 定义 CNN 的主体结构
class CNN(object):
    def __init__(self, n_steps, input_size, num_tags, batch_size):
        self.n_steps = n_steps
        self.input_size = input_size
        self.num_tags = num_tags
        self.batch_size = batch_size
        #卷积神将网络的输入:[batch, in_height, in_width, in_channels],在自然语言处理中height为1
        self.xs = tf.placeholder(tf.float32, [self.batch_size,1, self.n_steps, self.input_size], name='xs')
        #做序列标注,第二维对应好输入的n_steps,相当于每个时刻的输入都有一个输出
        self.ys = tf.placeholder(tf.int32, [self.batch_size, self.n_steps,self.num_tags], name='ys')#
        
        self.featureNum = 10#提取10个特征
        
        #[卷积核的高度,卷积核的宽度,图像通道数,卷积核个数]
        W_conv1 = self.weight_variable([1,3,1,self.featureNum])#提取10个特征
        #对应10个卷积核输出
        b_conv1 = self.bias_varibale([self.featureNum]) 
    
        #卷积操作
        layer_conv1  = tf.nn.conv2d(self.xs, W_conv1,strides=[1, 1, 1, 1],padding="SAME",) + b_conv1
        #激励层
        layer_conv1  = tf.nn.relu(layer_conv1)
        #最大值池化  本处去除池化层为了后续计算简便
        #layer_pool1  = tf.nn.max_pool(layer_conv1,
        #                              [1, 1, 3, 1],[1,1,1,1],padding='VALID') 
        layer_pool1 = layer_conv1

        # 全连接层  映射到self.n_steps x self.num_tags
        layer_pool1 = tf.reshape(layer_pool1,[self.n_steps,self.featureNum])
        W_fc1  = self.weight_variable([self.featureNum,self.num_tags])
        b_fc1  = self.bias_varibale([self.num_tags])
        h_fc1  = tf.matmul(layer_pool1, W_fc1) + b_fc1
        #激励层
        h_fc1 = tf.nn.relu(h_fc1)
        #softmax 归一化
        self.y_conv = tf.nn.softmax(h_fc1)        
        self.label = tf.reshape(self.ys,[self.n_steps,2])
        self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=self.label, logits=self.y_conv))
        #梯度下降
        self.train_op = tf.train.AdamOptimizer(LR).minimize(self.cost)      
        self.pred = tf.argmax(self.y_conv,axis = 1)
       
    def weight_variable(self,shape):
        initial=tf.truncated_normal(shape, mean=0.0, stddev=0.1)
        return tf.Variable(initial)
    def bias_varibale(self,shape):
        initial=tf.constant(0,1,shape=shape)
        return tf.Variable(initial)   
    
# 训练CNN
if __name__ == '__main__':
       
    # 搭建 CNN 模型
    model = CNN(TIME_STEPS, INPUT_SIZE, num_tags, BATCH_SIZE)
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
      
    # matplotlib可视化
    plt.ion()  # 设置连续 plot
    plt.show()  
    # 训练多次
    for i in range(150):
        xs, res,ys = get_batch()  # 提取 batch data
        # 初始化 data
        feed_dict = {
            model.xs: xs,
            model.ys: ys,
        }        
        # 训练
        _, cost,pred = sess.run(
            [model.train_op, model.cost,  model.pred],
            feed_dict=feed_dict)

    
        # plotting
  
        x = xs.reshape(-1,1)
        r = res.reshape(-1, 1)
        p = pred.reshape(-1, 1)
          
        x = range(len(x))
          
        plt.clf()
        plt.plot(x, r, 'r', x, p, 'b--')
        plt.ylim((-1.2, 1.2))
        plt.draw()
        plt.pause(0.3)  # 每 0.3 s 刷新一次
          
        # 打印 cost 结果
        if i % 20 == 0:
            print('cost: ', round(cost, 4))

  得到结果:

<span>CNN做序列标注问题(tensorflow)</span>

 

二、CNN主要知识点

  待整理。

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/119442.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • linux文件共享 samba_文件共享服务

    linux文件共享 samba_文件共享服务Samba是在Linux和UNIX系统上实现SMB协议的一个免费软件,由服务器及客户端程序构成;SMB(ServerMessagesBlock,信息服务块)是一种在局域网上共享文件和打印机的一种通信协议,它为局域网内的不同计算机之间提供文件及打印机等资源的共享服务;SMB协议是客户机/服务器型协议,客户机通过该协议可以访问服务器上的共享文件系统,

    2022年9月24日
    0
  • HDU 6138 Fleet of the Eternal Throne ( AC自动机)

    HDU 6138 Fleet of the Eternal Throne ( AC自动机)FleetoftheEternalThroneTimeLimit:2000/1000MS(Java/Others)    MemoryLimit:65536/65536K(Java/Others)TotalSubmission(s):291    AcceptedSubmission(s):131ProblemDescription

    2022年5月31日
    28
  • 计划任务 SchedulerFactoryBean 配置

    计划任务 SchedulerFactoryBean 配置Quartz是开源任务调度框架中的翘首,它提供了强大任务调度机制,同时保持了使用的简单性。Quartz允许开发人员灵活地定义触发器的调度时间表,并可以对触发器和任务进行关联映射。此外,Quartz提供了调度运行环境的持久化机制,可以保存并恢复调度现场,即使系统因故障关闭,任务调度现场数据并不会丢失。此外,Quartz还提供了组件式的侦听器、各种插件、线程池等功能。Spring为创建Quart…

    2022年5月10日
    123
  • idea 2021.2 Mac版激活码破解方法

    idea 2021.2 Mac版激活码破解方法,https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月15日
    367
  • HTML5_ScrollInToView方法「建议收藏」

    HTML5_ScrollInToView方法「建议收藏」HTML5_ScrollInToView方法 window.onload=function(){ /* 如果滚动页面也是DOM没有解决的一个问题。为了解决这个问题,浏览器实现了一下方法, 以方便开发人员如何更好的控制页面的滚动。在各种专有方法中,HTML5选择了scrollIntoView() 作为标准方法。 scrollIntoV

    2022年6月24日
    27
  • groovy 定义map_groovy map

    groovy 定义map_groovy mapMap<String,String>ad_config=result.dataad_config.each{data->println(data.key)println(data.value)}pangolin_global_full_screen_video_idadmob_app_idadmob_banner_idadmob_interstitial_idadmob_rew…

    2022年9月14日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号