Cube的高级设置

Cube的高级设置

分享来源地址:http://bigdata.51cto.com/art/201705/538648.htm

Cube的高级设置

    随着维度数目的增加,Cuboid 的数量会爆炸式地增长。为了缓解 Cube 的构建压力,Apache Kylin 引入了一系列的高级设置,帮助用户筛选出真正需要的 Cuboid。这些高级设置包括聚合组(Aggregation Group)、联合维度(Joint Dimension)、层级维度(Hierachy Dimension)和必要维度(Mandatory Dimension)等。”

    众所周知,Apache Kylin 的主要工作就是为源数据构建 N 个维度的 Cube,实现聚合的预计算。理论上而言,构建 N 个维度的 Cube 会生成 2个 Cuboid, 如图 1 所示,构建一个 4 个维度(A,B,C, D)的 Cube,需要生成 16 个Cuboid。

 

<span>Cube的高级设置</span>

 

    随着维度数目的增加 Cuboid 的数量会爆炸式地增长,不仅占用大量的存储空间还会延长 Cube 的构建时间。为了缓解 Cube 的构建压力,减少生成的 Cuboid 数目,Apache Kylin 引入了一系列的高级设置,帮助用户筛选出真正需要的 Cuboid。这些高级设置包括聚合组(Aggregation Group)、联合维度(Joint Dimension)、层级维度(Hierachy Dimension)和必要维度(Mandatory Dimension等,本系列将深入讲解这些高级设置的含义及其适用的场景。

聚合组(Aggregation Group)

用户根据自己关注的维度组合,可以划分出自己关注的组合大类,这些大类在 Apache Kylin 里面被称为聚合组。例如图 1 中展示的 Cube,如果用户仅仅关注维度 AB 组合和维度 CD 组合,那么该 Cube 则可以被分化成两个聚合组,分别是聚合组 AB 和聚合组 CD。如图 2 所示,生成的 Cuboid 数目从 16 个缩减成了 8 个。

 <span>Cube的高级设置</span>

 

(图2)

用户关心的聚合组之间可能包含相同的维度,例如聚合组 ABC 和聚合组 BCD 都包含维度 B 和维度 C。这些聚合组之间会衍生出相同的 Cuboid,例如聚合组 ABC 会产生 Cuboid BC,聚合组 BCD 也会产生 Cuboid BC。这些 Cuboid不会被重复生成,一份 Cuboid 为这些聚合组所共有,如图 3 所示。

 

<span>Cube的高级设置</span>

 

(图3)

有了聚合组用户就可以粗粒度地对 Cuboid 进行筛选,获取自己想要的维度组合。

聚合组应用实例

假设创建一个交易数据的 Cube,它包含了以下一些维度:顾客 ID buyer_id 交易日期 cal_dt、付款的方式 pay_type 和买家所在的城市 city。有时候,分析师需要通过分组聚合 city、cal_dt 和 pay_type 来获知不同消费方式在不同城市的应用情况;有时候,分析师需要通过聚合 city 、cal_dt 和 buyer_id,来查看顾客在不同城市的消费行为。在上述的实例中,推荐建立两个聚合组,包含的维度和方式如图 4 :

 <span>Cube的高级设置</span>

 

(图4)

聚合组 1: [cal_dt, city, pay_type]

聚合组 2: [cal_dt, city, buyer_id]

在不考虑其他干扰因素的情况下,这样的聚合组将节省不必要的 3 个 Cuboid: [pay_type, buyer_id]、[city, pay_type, buyer_id] 和 [cal_dt, pay_type, buyer_id] 等,节省了存储资源和构建的执行时间。

Case 1: 

SELECT cal_dt, city, pay_type, count(*) FROM table GROUP BY cal_dt, city, pay_type 则将从 Cuboid [cal_dt, city, pay_type] 中获取数据。

Case2: 

SELECT cal_dt, city, buy_id, count(*) FROM table GROUP BY cal_dt, city, buyer_id 则将从 Cuboid [cal_dt, city, pay_type] 中获取数据。

Case3 如果有一条不常用的查询:

SELECT pay_type, buyer_id, count(*) FROM table GROUP BY pay_type, buyer_id 则没有现成的完全匹配的 Cuboid。

此时,Apache Kylin 会通过在线计算的方式,从现有的 Cuboid 中计算出最终结果。

联合维度(Joint Dimension)

用户有时并不关心维度之间各种细节的组合方式,例如用户的查询语句中仅仅会出现 group by A, B, C,而不会出现 group by A, B 或者 group by C 等等这些细化的维度组合。这一类问题就是联合维度所解决的问题。例如将维度 A、B 和 C 定义为联合维度,Apache Kylin 就仅仅会构建 Cuboid ABC,而 Cuboid AB、BC、A 等等Cuboid 都不会被生成。最终的 Cube 结果如图5所示,Cuboid 数目从 16 减少到 4。

 <span>Cube的高级设置</span>

 

(图5)

联合维度应用实例

假设创建一个交易数据的Cube,它具有很多普通的维度,像是交易日期 cal_dt,交易的城市 city,顾客性别 sex_id 和支付类型 pay_type 等。分析师常用的分析方法为通过按照交易时间、交易地点和顾客性别来聚合,获取不同城市男女顾客间不同的消费偏好,例如同时聚合交易日期 cal_dt、交易的城市 city 和顾客性别 sex_id来分组。在上述的实例中,推荐在已有的聚合组中建立一组联合维度,包含的维度和组合方式如图6:

 <span>Cube的高级设置</span>

 

(图6)

聚合组:[cal_dt, city, sex_id,pay_type]

联合维度: [cal_dt, city, sex_id]

Case 1

SELECT cal_dt, city, sex_id, count(*) FROM table GROUP BY cal_dt, city, sex_id 则它将从Cuboid [cal_dt, city, sex_id]中获取数据

Case2如果有一条不常用的查询:

SELECT cal_dt, city, count(*) FROM table GROUP BY cal_dt, city 则没有现成的完全匹配的 Cuboid,Apache Kylin 会通过在线计算的方式,从现有的 Cuboid 中计算出最终结果。

层级维度(Hierarchy Dimension)

用户选择的维度中常常会出现具有层级关系的维度。例如对于国家(country)、省份(province)和城市(city)这三个维度,从上而下来说国家/省份/城市之间分别是一对多的关系。也就是说,用户对于这三个维度的查询可以归类为以下三类:

  1. group by country
  2. group by country, province(等同于group by province)
  3. group by country, province, city(等同于 group by country, city 或者group by city)

以图7所示的 Cube 为例,假设维度 A 代表国家,维度 B 代表省份,维度 C 代表城市,那么ABC 三个维度可以被设置为层级维度,生成的Cube 如图7所示。

 

<span>Cube的高级设置</span>

 

(图7)

例如,Cuboid [A,C,D]=Cuboid[A, B, C, D],Cuboid[B, D]=Cuboid[A, B, D],因而 Cuboid[A, C, D] 和 Cuboid[B, D] 就不必重复存储。

图8展示了 Kylin 按照前文的方法将冗余的Cuboid 剪枝从而形成图 2 的 Cube 结构,Cuboid 数目从 16 减小到 8。

 

<span>Cube的高级设置</span>

 

(图8)

层级维度应用实

假设一个交易数据的 Cube,它具有很多普通的维度,像是交易的城市 city,交易的省 province,交易的国家 country, 和支付类型 pay_type等。分析师可以通过按照交易城市、交易省份、交易国家和支付类型来聚合,获取不同层级的地理位置消费者的支付偏好。在上述的实例中,建议在已有的聚合组中建立一组层级维度(国家country/省province/城市city),包含的维度和组合方式如图9:

 <span>Cube的高级设置</span>

 

(图9)

聚合组:[country, province, city,pay_type]

层级维度: [country, province, city]

Case 1 当分析师想从城市维度获取消费偏好时:

SELECT city, pay_type, count(*) FROM table GROUP BY city, pay_type 则它将从 Cuboid [country, province, city, pay_type] 中获取数据。

Case 2 当分析师想从省级维度获取消费偏好时:

SELECT province, pay_type, count(*) FROM table GROUP BY province, pay_type 则它将从Cuboid [country, province, pay_type] 中获取数据。

Case 3 当分析师想从国家维度获取消费偏好时

SELECT country, pay_type, count(*) FROM table GROUP BY country, pay_type 则它将从Cuboid [country, pay_type] 中获取数据。

Case 4 如果分析师想获取不同粒度地理维度的聚合结果时:

无一例外都可以由图 3 中的 cuboid 提供数据 。

例如,SELECT country, city, count(*) FROM table GROUP BY country, city 则它将从 Cuboid [country, province, city] 中获取数据。

必要维度 (Mandatory Dimension)

用户有时会对某一个或几个维度特别感兴趣,所有的查询请求中都存在group by这个维度,那么这个维度就被称为必要维度,只有包含此维度的Cuboid会被生成(如图10)。

 

<span>Cube的高级设置</span>

 

(图10)

以图 1中的Cube为例,假设维度A是必要维度,那么生成的Cube则如图11所示,维度数目从16变为9。

 

<span>Cube的高级设置</span>

 

(图11)

必要维度应用实例

假设一个交易数据的Cube,它具有很多普通的维度,像是交易时间order_dt,交易的地点location,交易的商品product和支付类型pay_type等。其中,交易时间就是一个被高频作为分组条件(group by)的维度。 如果将交易时间order_dt设置为必要维度,包含的维度和组合方式如图12:

 

<span>Cube的高级设置</span>

 

(图12)

系列总结

根据本系列的原理介绍,在Kylin的高级设置中,用户可以根据查询需求对Cube构建预计算的结果进行优化(剪枝),从而减少占用的存储空间。 而优化得当的Cube可以在占用尽量少的存储空间的同时提供极强的查询性能。

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/119768.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • gtk还有人用吗_iperf使用方法

    gtk还有人用吗_iperf使用方法​GTK+:GTK+的简介、安装、使用方法之详细攻略目录GTK+的简介GTK+的安装GTK+的使用方法GTK+的简介GTK+(GIMPToolkit)是一套源码以LGPL许可协议分发、跨平台的图形工具包。最初是为GIMP写的,已成为一个功能强大、设计灵活的一个通用图形库,是GNU/Linux下开发图形界面的应用程序的主流开发工具之一。并且,GTK+也有Windows版本和MacOSX版。GTK+是一种图形用户界面(GUI)工

    2022年10月22日
    0
  • 使用JAX-WS进行应用程序身份验证「建议收藏」

    使用JAX-WS进行应用程序身份验证「建议收藏」在JAX-WS中处理身份验证的常用方法之一是客户端提供“用户名”和“密码”,将其附加在SOAP请求标头中并发送到服务器,服务器解析SOAP文档并检索提供的“用户名”和“密码”从请求标头中进行,并从数据库中进行验证,或者使用其他任何方法。在本文中,我们向您展示如何实现上述“JAX-WS中的应用程序级别认证”。想法…在Web服务客户端站点上,只需将“用户名”和“密码”放入请…

    2022年7月15日
    20
  • BN层论文总结[通俗易懂]

    BN层论文总结[通俗易懂]论文:BatchNormalization:AcceleratingDeepNetworkTrainingbyReducingInternalCovariateShiftMotivation题目中的InternalCovariateShift指的是在训练过程中各层输入数据的分布随前一层网络参数的变化而变化的现象,这种现象会使训练深度神经网络变得更加复杂,需要耗费更多的时…

    2022年10月14日
    0
  • 谁说而立之年,是程序员职业生涯的终点

    点击上方“全栈程序员社区”,星标公众号 重磅干货,第一时间送达 原文始发于微信公众号(全栈程序员社区):谁说而立之年,是程序员职业生涯的终点

    2021年6月23日
    83
  • ubuntu安装python3(源码安装方法)

    ubuntu安装python3(源码安装方法)Ubuntu安装Python3(第0步)建议配置阿里镜像https://developer.aliyun.com/mirror/ubuntu一、安装相关依赖apt-getupdate&&apt-getupgradeapt-getinstall-ybuild-essentialcheckinstalllibreadline-gplv2-devlibncursesw5-devlibssl-devlibsqlite3-devtk-devlibgdbm-devl

    2022年6月23日
    26
  • Springboot框架是什么_javaweb框架主要的三大基本框架

    Springboot框架是什么_javaweb框架主要的三大基本框架对于spring框架,我们接触得比较多的应该是springmvc、和spring。而spring的核心在于IOC(控制反转)和DI(依赖注入)。而这些框架在使用的过程中会需要配置大量的xml,或者需要做很多繁琐的配置。springboot框架是为了能够帮助使用spring框架的开发者快速高效的构建一个基于spirng框架以及spring生态体系的应用解决方案。它是对“约定优于配置”这个理念下的一个最佳实践。因此它是一个服务于框架的框架,服务的范围是简化配置文件。…

    2022年8月20日
    4

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号