机器学习降维之线性判别分析

1.LDA描述线性判别分析(LinearDiscriminantAnalysis,LDA)是一种有监督学习算法,同时经常被用来对数据进行降维,它是RonaldDisher在1936年发明的,

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

1. LDA描述

线性判别分析(Linear Discriminant Analysis,LDA)是一种有监督学习算法,同时经常被用来对数据进行降维,它是Ronald Disher在1936年发明的,有些资料上也称位Fisher LDA.LDA是目前机器学习、数据挖掘领域中经典且热门的一种算法

相比于PCA,LDA可以作为一种有监督的降维算法,在PCA中,算法没有考虑数据的类别,自己把原数据映射到方差较大的方向上而已

如下图,红色的点代表class1类别的数据,蓝色代表class2的数据,根据PCA算法,数据应该映射到方差最大的方向,即Y轴,但是class1和class2两个不同类别的数据就会完全的混合在一起,很难区分开。所以使用PCA算法进行降维后再进行分类的效果会非常差,这时候就需要我们使用LDA算法,将数据映射到X轴上。下面我们从二分类分析LDA原理

import numpy as np
import matplotlib.pyplot as plt

c1_x = np.random.uniform(-0.5,-2,100)
c1_y = np.random.uniform(-10,10,100)

c2_x = np.random.uniform(0.5,2,100)
c2_y = np.random.uniform(-10,10,100)

l1_x = [0 for _ in range(24)]
l1_y = [i for i in range(-12,12,1)]
l2_x = [i for i in range(-4,5,1)]
l2_y = [0 for _ in range(9)]

plt.scatter(c1_x,c1_y,c = 'r',marker = 'o',label='class1')
plt.scatter(c2_x,c2_y,c = 'b',marker = '*',label='class2')
plt.plot(l1_x,l1_y,'black',label='X')
plt.plot(l2_x,l2_y,'g',label='Y')
plt.legend()
plt.xlim(-5, 5)
plt.ylim(-12, 12)
plt.show()

机器学习降维之线性判别分析

2. 从二分类分析LDA原理

先抛出LDA原理中心思想:最大化类间距离和最小化类内距离,再进行说明

从一个简单的二分类问题出发,有C1、C2两个类别的样本,两类的均值分别\(\mu_1,\mu_2\),我们希望投影之后两类之间的距离尽可能大$$D(C1,C2) ={ ||W^T\mu_1 – WT\mu_2||}_22$$
注:\(W^T\mu_1为\mu_1再W方向上的投影向量\),从而转化为以下优化问题

\[\begin{cases} max{ ||W^T\mu_1 – W^T\mu_2||}_2^2\\ s.t. W^TW = 1 \end{cases}\]

容易发现,当W与\((\mu_1 – \mu_2)\)方向一致的时候,该距离最大

机器学习降维之线性判别分析

上面左边的图是按照最大化两类投影中心距离的准则绘制的,会发现原本可以被线性划分的两类样本,经过投影后又了一定程度的重叠

上面右边的图就是按照最大类间距,最小类内距思想绘制的,虽然两类的中心在投影之后的距离又所减小,但确使投影之后样本的可区分性提高了

如何表示类内距离?可以使用类内方差,类内方差定义为各个类分别的方差和,有类内距离表示再结合上图说明,继续对上面的优化函数进行优化得到:

\[\begin{cases} maxJ(W) = \frac{{ ||W^T\mu_1 – W^T\mu_2||}_2^2}{D1 + D2}\\ s.t. W^TW = 1 \end{cases}\]

注:D1为C1的类内方差和,D2为C2的类内方差和

3. LDA求解方法

\[\begin{cases} maxJ(W) = \frac{{ ||W^T\mu_1 – W^T\mu_2||}_2^2}{D1 + D2}\\ s.t. W^TW = 1 \end{cases}\]

\[D1 = \sum_{x\epsilon C_1}{(W^T(x_i – \mu_1))}^2 = \sum_{x\epsilon C_1}W^T(x_i – \mu_1){(x_i – \mu_1)}^TW \]

\[D2 = \sum_{x\epsilon C_2}{(W^T(x_i – \mu_2))}^2 = \sum_{x\epsilon C_2}W^T(x_i – \mu_2){(x_i – \mu_2)}^TW \]

因此J(W)可以写成:

\[J(W) = \frac{W^T(\mu_1 – \mu_2){(\mu_1 – \mu_2)}^TW}{\sum_{x\epsilon C_i}W^T(x – \mu_i){(x – \mu_i)}^TW} \]

定义类间距离\(S_B = (\mu_1 – \mu_2){(\mu_1 – \mu_2)}^T\),类内距离\(S_W = \sum_{x\epsilon C_i}(x – \mu_i){(x – \mu_i)}^T\)

则:$$J(W) = \frac{WTS_BW}{WTS_WW}$$

对W求导,并令导数为0

\[(W^TS_W W)S_B W = (W^T S_B W)S_W W \]

\(\lambda = J(W) = \frac{W^TS_BW}{W^TS_WW}\)则有:

\[S_B W = \lambda S_w W \]

整理得到:

\[{S_w}^{-1}S_BW = \lambda W \]

看到这里就以及很清楚了,我们最大化目标对应一个矩阵的特征值,于是LDA降维变成了一个求矩阵特征向量的问题。\(J(W)\)就对应矩阵\({S_w}^{-1}S_B\)的最大的特征值,而投影方向就是这个特征值对应的特征向量

将二分类推广到多分类也得到同样的结论,总结具有多个列别标签高维的LDA求解方法:

  • (1)计算数据集中每个类别样本的均值向量\(\mu_j\),以及总体均值向量\(\mu\)
  • (2)计算类内散度矩阵\(S_W\),全局散度矩阵\(S_T\),并得到类间散度矩阵\(S_B = S_T – S_W\)
  • (3)对矩阵\({S_W}^{-1}S_B进行特征值分解,将特征值从大到小排列\)
  • (4)特征值前d大的对应的特征向量\(W_1,W_2,…,W_d\),通过以下映射将n维映射到d维:$$\acute{X_i} ={(W_1Tx_i,W_2Tx_i,…,W_dTx_i)}T$$

参考:《百面机器学习》

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/120012.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • tcpdump抓包命令详解_tcpdump抓udp包命令详解

    tcpdump抓包命令详解_tcpdump抓udp包命令详解tcpdump

    2022年8月20日
    17
  • vm安装winme[通俗易懂]

    vm安装winme[通俗易懂]vm安装windowsme第一步,到msdn下载windowsme2.打开vm3.回到主页,点击创建新的虚拟机3.按典型4.下一步,按截图位置不要在c盘下一步完成h回车一直回车完整教程:https://www.bilibili.com/video/av9140535/我要去图书馆了,以后在把完整版发表…

    2022年9月28日
    3
  • 深入编程之QQ盗号核心代码[通俗易懂]

    深入编程之QQ盗号核心代码[通俗易懂]经常有听到有朋友QQ被盗的消息,总感觉做出这种行为的人是可鄙的,不就是对QQ窗口进行监视,然后再是记录用户输入的号码和密码,认为没什么了不起。对于Windows核心编程,本人还是一只菜鸟,前一段时间把《Windows系统编程》粗略的看一边(当然重点地方仔细的看),由于对于C++有点基础,感觉学起来比较容易上手。但到了这两天真正实践的时候,遇到了各种各样的问题。即使一个小小的问题都足以让我…

    2022年6月26日
    69
  • linux mysql1146_MySQL主从同步及错误1146解决办法

    linux mysql1146_MySQL主从同步及错误1146解决办法在实际使用MySQL的时候我们有时要增加一些新的库进行主从同步,所以可以通过修改my.cnf文件以及在主库上添加用户连接权限就可以实现主从同步,而在做主从同步的时候碰到几个问题这里就和大家说一下,至于如何构建主从同步这里就不再多说了,相信在网上能找到一大堆,这里就稍稍提几个关键点,在从库下的my.cnf添加如下几行:server-id=2#一般主库是1,从库可以除1以外的数字log-bin=m…

    2022年6月4日
    93
  • java mqtt服务器搭建「建议收藏」

    java mqtt服务器搭建「建议收藏」MQTT服务器搭建和客户端代码编写(java实现)服务器关于linux系统,可以在阿里云购买云服务器或者利用虚拟机安装CentOs系统。我用的就是阿里云的云服务器,比较方便吧安装Emqx服务器安装必要的依赖:$sudoyuminstall-yyum-utilsdevice-mapper-persistent-datalvm2设置稳定的仓库,比如CentOs7的例子:$sudoyum-config-manager–add-repohttps://repos.emqx.io

    2022年6月12日
    29
  • 牛腩新闻公布系统小结

    牛腩新闻公布系统小结

    2022年1月27日
    47

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号