优化器Optimizer

目前最流行的5种优化器:Momentum(动量优化)、NAG(Nesterov梯度加速)、AdaGrad、RMSProp、Adam,所有的优化算法都是在原始梯度下降算法的基础上增加惯性和环境感知因素进

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

目前最流行的5种优化器:Momentum(动量优化)、NAG(Nesterov梯度加速)、AdaGrad、RMSProp、Adam,所有的优化算法都是在原始梯度下降算法的基础上增加惯性和环境感知因素进行持续优化

Momentum优化

momentum优化的一个简单思想:考虑物体运动惯性,想象一个保龄球在光滑表面滚下一个平缓的坡度,最开始会很慢,但是会迅速地恢复动力,直到达到最终速度(假设又一定的摩擦力核空气阻力)

momentum优化关注以前的梯度是多少,公式:

\((1)m \leftarrow \beta m + \eta \nabla _\theta J(\theta)\)

\((2)\theta \leftarrow \theta – m\)

超参数\(\beta\)称为动量,其必须设置在0(高摩擦)和1(零摩擦)之间,默认值为0.9

可以很容易地验证当梯度保持一个常量,最终速度(即权重的最大值)就等于梯度乘以学习率乘以\(\frac{1}{1-\beta}\),当\(\beta = 0.9\)时,那么最终速度等于10倍梯度乘以学习率,所有momentum优化最终会比梯度下降快10倍,在不适用批量归一化的深度神经网络中,高层最终常会产生不同尺寸的输入,因此使用momentum优化会很有帮助,同时还会帮助跨过局部最优

由于又动量,优化器可能会超调一点,然后返回,再超调,来回震荡多次后,最后稳定在最小值,这也是系统中要有一些摩擦的原因之一,它可以帮助摆脱震荡,从而加速收敛

optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate,momentum=0.9)

Nesterov梯度加速

公式:

\((1)m \leftarrow \beta m + \eta \nabla _\theta J(\theta + \beta m)\)

\((2)\theta \leftarrow \theta – m\)

与momentum唯一不同的是用\(\theta + \beta m\)来测量梯度,这个小调整有效是因为在通常情况下,动量矢量会指向正确的方向,所以在该方向相对远的地方使用梯度会比在原有地方更准确一些

optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate,momentum=0.9,use_nesterov=True)

AdaGrad

AdaGrad对于简单的二次问题一般表现都不错,但是在训练神经网络时却经常很早就停滞了,学习速率缩小得很多,在到达全局最优前算法就停止了,所以尽管tensorflow又AdagradOptimizer,也不要用它来训练深度神经网络
公式:

\((1)s \leftarrow s + \nabla _\theta J(\theta) \otimes \nabla _\theta J(\theta)\)

\((2)\theta \leftarrow \theta – \eta \nabla _\theta J(\theta) \oslash \sqrt{s+\varepsilon}\)

RMSProp

AdaGrad降速太快而且没有办法收敛到全局最优,RMSProp算法却通过仅积累最近迭代中得梯度(而非从训练开始得梯度)解决这个问题,它通在第一步使用指数衰减开实现
公式:

\((1)s \leftarrow \beta s + (1-\beta)\nabla _\theta J(\theta) \otimes \nabla _\theta J(\theta)\)

\((2)\theta \leftarrow \theta – \eta \nabla _\theta J(\theta) \oslash \sqrt{s+\varepsilon}\)

衰减率\(\eta\)通常为0.9

optimizer = tf.train.RMSPropOptimizer(learning_rate=learning_rate,momentum=0.9,decay=0.9,epsilon=0.9)

除去非常简单得问题,这个优化器得表现几乎全部优于AdaGrad,同时表现也基本都优于Momentum优化和NAG,事实上在Adam优化出现之前,它是众多研究者所推荐得优化算法

Adam优化

Adam代表了自适应力矩估计,集合了Momentum优化和RmsProp的想法,类似Momentum优化,它会跟踪过去梯度的指数衰减平均值,同时也类似RMSProp,它会跟踪过去梯度平方的指数衰减平均值,

Adam算法:

\((1)m \leftarrow \beta_1 m + (1-\beta_i) \nabla _\theta J(\theta)\)

\((2)s \leftarrow \beta_2s +(1-\beta_2)\nabla _\theta J(\theta) \otimes \nabla _\theta J(\theta)\)

\((3)m \leftarrow \frac{m}{1-\beta_1^T}\)

\((4)s \leftarrow \frac{s}{1-\beta_2^T}\)

\((5)\theta \leftarrow \theta – \eta m\oslash \sqrt{s+\varepsilon}\)

注:T表示迭代次数(从1开始)

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)

使用Adam优化器对mnist进行测试

import tensorflow as tf
from tensorflow.contrib.layers import fully_connected,batch_norm
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data',one_hot=True)

tf.reset_default_graph()
n_input = 784
n_hidden1 = 300
n_hidden2 = 100
n_output = 10

X = tf.placeholder(tf.float32,shape=(None,n_input),name='X')
Y = tf.placeholder(tf.int64,shape=(None,10),name='Y')
#归一化参数
is_training = tf.placeholder(tf.bool,shape=(),name='is_training')
bn_params = {'is_training':is_training,'decay':0.99,'updates_collections':None}

with tf.name_scope('dnn'):
    with tf.contrib.framework.arg_scope([fully_connected],normalizer_fn=batch_norm,normalizer_params=bn_params):
        hidden1 = fully_connected(X,n_hidden1,activation_fn=tf.nn.elu,scope='hidden1')
        hidden2 = fully_connected(hidden1,n_hidden2,activation_fn=tf.nn.elu,scope='hidden2')
        y_prab = fully_connected(hidden2,n_output,activation_fn=tf.nn.softmax,scope='output')
with tf.name_scope('train'):
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=Y,logits=y_prab))
    learning_rate = tf.placeholder(tf.float32,shape=(),name='learning_rate')
    optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)
with tf.name_scope('accuracy'):
    prab_bool = tf.equal(tf.argmax(y_prab,1),tf.argmax(Y,1))
    accuracy = tf.reduce_mean(tf.cast(prab_bool,tf.float32))
with tf.name_scope('tensorboard_mnist'):
    file_writer = tf.summary.FileWriter('./tensorboard/',tf.get_default_graph())
    accuracy_summary = tf.summary.scalar('accuracy',accuracy)
with tf.name_scope('saver'):
    saver = tf.train.Saver()
with tf.name_scope('collection'):
    tf.add_to_collection('logits',y_prab)
    
epoches = 20
batch_size = 100
n_batches = mnist.train.num_examples // batch_size
rate = 0.1
init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    for epoch in range(epoches):
        for batch in range(n_batches):
            x_batch,y_batch = mnist.train.next_batch(batch_size)
            sess.run(optimizer,feed_dict={X:x_batch,Y:y_batch,learning_rate:rate,is_training:True})
        result = sess.run([accuracy,accuracy_summary],feed_dict={X:mnist.test.images,Y:mnist.test.labels,
                                                                 learning_rate:rate,is_training:False})
        
        file_writer.add_summary(result[1],epoch)
        print('epoch:{},accuracy:{}'.format(epoch,result[0]))
    saver.save(sess,'./model/model_final.ckpt',global_step=5)
    print('stop')
Extracting MNIST_data\train-images-idx3-ubyte.gz
Extracting MNIST_data\train-labels-idx1-ubyte.gz
Extracting MNIST_data\t10k-images-idx3-ubyte.gz
Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
epoch:0,accuracy:0.945900022983551
epoch:1,accuracy:0.9574999809265137
epoch:2,accuracy:0.9635000228881836
epoch:3,accuracy:0.9693999886512756
epoch:4,accuracy:0.970300018787384
epoch:5,accuracy:0.9704999923706055
epoch:6,accuracy:0.9758999943733215
epoch:7,accuracy:0.9757999777793884
epoch:8,accuracy:0.9768999814987183
epoch:9,accuracy:0.9783999919891357
epoch:10,accuracy:0.9783999919891357
epoch:11,accuracy:0.9642999768257141
epoch:12,accuracy:0.9779999852180481
epoch:13,accuracy:0.9799000024795532
epoch:14,accuracy:0.9760000109672546
epoch:15,accuracy:0.977400004863739
epoch:16,accuracy:0.9819999933242798
epoch:17,accuracy:0.9781000018119812
epoch:18,accuracy:0.9661999940872192
epoch:19,accuracy:0.9779000282287598
stop
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/120023.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 指令字长,机器字长,存储字长的关系_指令字长的概念

    指令字长,机器字长,存储字长的关系_指令字长的概念指令字长、存储字长、机器字长、时钟周期、机器周期、指令周期、取址周期、存取周期的关系考研做题途中遇到这些问题,发现自己掌握的很模糊,遂写下此篇,加深记忆。1、机器字长、存储字长、指令字长机器字长:CPU一次能够处理的数据的位数。通常等于寄存器的位数。例子:windows64位/32位,这里的64位和32位指的就是该操作系统的机器字长。存储字长:计算机存储器中一个存储单元可以存储的位数。例子:某某计算机按照字节编址,即说明该计算机的存储字长为1B=8位。指令字长:计算机内一条指令的位数。这里通常指

    2022年8月31日
    3
  • Java调用第三方接口示范

    Java调用第三方接口示范人工智能,零基础入门!http://www.captainbed.net/inner在项目开发中经常会遇到调用第三方接口的情况,比如说调用第三方的天气预报接口。使用流程【1】准备工作:在项目的工具包下导入HttpClientUtil这个工具类,或者也可以使用Spring框架的restTemplate来调用,上面有调用接口的方法【分为Get和Post方式的有参和无参调用】:pa…

    2022年4月26日
    41
  • fastclick.js

    fastclick.js;(function(){‘usestrict’;/***@preserveFastClick:polyfilltoremoveclickdelaysonbrowserswithtouchUIs.**@codingstandardftlabs-jsv2*@copyrightTheFinancia

    2022年6月19日
    25
  • vue的安装和使用_如何正确使用

    vue的安装和使用_如何正确使用前言Vue(读音/vjuː/,类似于view)是一套用于构建前后端分离的框架。刚开始是由国内优秀选手尤雨溪开发出来的,目前是全球“最”流行的前端框架。使用vue开发网页很简单,并且技术生态环境完善

    2022年7月31日
    6
  • VCR连接_服务器出问题了怎么办

    VCR连接_服务器出问题了怎么办VC连接服务器过程:1.     服务器端创建端口a)       使用一个侦听子类来创建如CListenSocket*m_pSocket,这个子类中重载Socket函数OnAccept(intnErrorCode),在OnAccept函数中主要完成服务器端纪录并保存客户端的信息。VoidCListenSocket::OnAccept(intnErrorCode){      //先

    2022年8月12日
    9
  • cas算法是什么_对算法的认识

    cas算法是什么_对算法的认识应用原子操作类,例如AtomicInteger,AtomicBoolean …适用于并发量较小,多cpu情况下;Java中有许多线程安全类,比如线程安全的集合类。从Java5开始,在java.util.concurrent包下提供了大量支持高效并发访问的集合接口和实现类。如:ConcurrentMap、ConcurrentLinkedQueue等线程安全集合。引入问题那么问题来了,这些线程安全类的底层是怎么保证线程安全的,你可能会想到是不是使用同步代码锁synchronized?引入概念这些线

    2022年8月8日
    4

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号