Python常用数据结构之heapq模块建议收藏

heapq堆是一种特殊的树形结构,通常我们所说的堆的数据结构指的是完全二叉树,并且根节点的值小于等于该节点所有子节点的值常用方法常用方法示例>>>[15,2,50,3

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

全栈程序员社区此处内容已经被作者隐藏,请输入验证码查看内容
验证码:
请关注本站微信公众号,回复“验证码”,获取验证码。在微信里搜索“全栈程序员社区”或者“www_javaforall_cn”或者微信扫描右侧二维码都可以关注本站微信公众号。

Python数据结构常用模块collections、heapq、operator、itertools

heapq

  堆是一种特殊的树形结构,通常我们所说的堆的数据结构指的是完全二叉树,并且根节点的值小于等于该节点所有子节点的值

                                                       Python常用数据结构之heapq模块建议收藏

常用方法

heappush(heap,item) 往堆中插入一条新的值
heappop(heap) 从堆中弹出最小值
heapreplace(heap,item) 从堆中弹出最小值,并往堆中插入item
heappushpop(heap,item) Python3中的heappushpop更高级
heapify(x) 以线性时间将一个列表转化为堆
merge(*iterables,key=None,reverse=False) 合并对个堆,然后输出
nlargest(n,iterable,key=None) 返回可枚举对象中的n个最大值并返回一个结果集list
nsmallest(n,iterable,key=None) 返回可枚举对象中的n个最小值并返回一个结果集list

常用方法示例 

#coding=utf-8

import heapq
import random

def test():
    li = list(random.sample(range(100),6))
    print (li)

    n = len(li)
    #nlargest
    print ("nlargest:",heapq.nlargest(n, li))
    #nsmallest
    print ("nsmallest:", heapq.nsmallest(n, li)) 
    #heapify
    print('original list is', li) 
    heapq.heapify(li) 
    print('heapify  list is', li)  
    # heappush & heappop  
    heapq.heappush(li, 105)  
    print('pushed heap is', li)  
    heapq.heappop(li)  
    print('popped heap is', li)  
    # heappushpop & heapreplace  
    heapq.heappushpop(li, 130)    # heappush -> heappop  
    print('heappushpop', li)  
    heapq.heapreplace(li, 2)    # heappop -> heappush  
    print('heapreplace', li) 

  >>> [15, 2, 50, 34, 37, 55]
  >>> nlargest: [55, 50, 37, 34, 15, 2]
  >>> nsmallest: [2, 15, 34, 37, 50, 55]
  >>> original list is [15, 2, 50, 34, 37, 55]
  >>> heapify  list is [2, 15, 50, 34, 37, 55]
  >>> pushed heap is [2, 15, 50, 34, 37, 55, 105]
  >>> popped heap is [15, 34, 50, 105, 37, 55]
  >>> heappushpop [34, 37, 50, 105, 130, 55]
  >>> heapreplace [2, 37, 50, 105, 130, 55]

堆排序示例 

  heapq模块中有几张方法进行排序:

  方法一:

#coding=utf-8

import heapq

def heapsort(iterable):
    heap = []
    for i in iterable:
        heapq.heappush(heap, i)

    return [heapq.heappop(heap) for j in range(len(heap))]
        
if __name__ == "__main__":
    li = [30,40,60,10,20,50]
    print(heapsort(li))

  >>>> [10, 20, 30, 40, 50, 60]

  方法二(使用nlargest或nsmallest):

li = [30,40,60,10,20,50]
#nlargest
n = len(li)
print ("nlargest:",heapq.nlargest(n, li))
#nsmallest
print ("nsmallest:", heapq.nsmallest(n, li))

  >>> nlargest: [60, 50, 40, 30, 20, 10]
  >>> nsmallest: [10, 20, 30, 40, 50, 60]

  方法三(使用heapify):

def heapsort(list):
    heapq.heapify(list)
    heap = []

    while(list):
        heap.append(heapq.heappop(list))
        
    li[:] = heap
    print (li)
        
if __name__ == "__main__":
    li = [30,40,60,10,20,50]
    heapsort(li)

  >>> [10, 20, 30, 40, 50, 60]

堆在优先级队列中的应用

  需求:实现任务的添加,删除(相当于任务的执行),修改任务优先级

pq = []                         # list of entries arranged in a heap
entry_finder = {}               # mapping of tasks to entries
REMOVED = '<removed-task>'      # placeholder for a removed task
counter = itertools.count()     # unique sequence count

def add_task(task, priority=0):
    'Add a new task or update the priority of an existing task'
    if task in entry_finder:
        remove_task(task)
    count = next(counter)
    entry = [priority, count, task]
    entry_finder[task] = entry
    heappush(pq, entry)

def remove_task(task):
    'Mark an existing task as REMOVED.  Raise KeyError if not found.'
    entry = entry_finder.pop(task)
    entry[-1] = REMOVED

def pop_task():
    'Remove and return the lowest priority task. Raise KeyError if empty.'
    while pq:
        priority, count, task = heappop(pq)
        if task is not REMOVED:
            del entry_finder[task]
            return task
    raise KeyError('pop from an empty priority queue')

 

  

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/120201.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 数域相关概念「建议收藏」

    数域相关概念「建议收藏」现在开始密码学的学习阶段了,数学知识是必不可少的。数环:定义:设S是复数集的非空子集。如果S中的数对任意两个数的和、差、积(没有商)仍属于S,则称S是一个数环。例如整数集Z就是一个数环,有理数集Q、实数集R、复数集C等都是数环。性质:1.任何数环都包含数零(即零环是最小的数环)。2.设S是一个数环。若a∈S,则na∈S(n∈Z)。3.若M

    2025年7月12日
    3
  • 一句话木马怎么连接_js木马源码

    一句话木马怎么连接_js木马源码“EASYNEWS新闻管理系统v1.01正式版”是在企业网站中非常常见的一套整站模版,在该网站系统的留言本组件中就存在着数据过滤不严漏洞,如果网站是默认路径和默认文件名安装的话,入侵者可以利用该漏洞直接上传ASP木马程序控制整个网站服务器。Step1搜索入侵目标使用了“EASYNEWS新闻管理系统v1.01正式版”的网站,在网站页面的底部版权声明处,往往会有关键字符为“WWW.52EAS…

    2025年6月20日
    3
  • smartsvn 用法

    smartsvn 用法都说SMARTSVN是最全的Mac上的SVN客户端工具,分Pro版和基础版,基础版跟Versions差不多,这里找了Pro版下载并激活成功教程:mac版本smartSVN客户端下载:http://www.s

    2022年8月1日
    33
  • Git使用流程_git提交流程

    Git使用流程_git提交流程以coding为例,演示如何使用git首先理解下整个流程,如图一,将本地代码上传到远程仓库1.(电脑里得先下载git)登录coding,新建一个仓库,点击代码浏览可以看到2.在本地新建一个文件夹,作为项目根目录,再此启动GitBash,进入目录,并输入gitinit初始化一个本地git仓库3.将本地仓库和我们在coding上创建的远程仓库对接起来,输入gitre…

    2022年9月23日
    3
  • PR曲线详解

    PR曲线详解目录PR曲线概念precision(精准率)和recall(召回率)PR曲线功能说明PR曲线概念PR曲线中的P代表的是precision(精准率),R代表的是recall(召回率),其代表的是精准率与召回率的关系,一般情况下,将recall设置为横坐标,precision设置为纵坐标。precision(精准率)和recall(召回率)上述中介少了PR曲线的实质代表为precision(精准率)和recall(召回率),但是这二者是什么呢?下面咱们进行相关的讲述。首先,我们了解一下混淆矩阵,如下表

    2022年6月30日
    244
  • leetcode-26删除有序数组中的重复项(双指针)「建议收藏」

    leetcode-26删除有序数组中的重复项(双指针)「建议收藏」原题链接给你一个有序数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。不要使用额外的数组空间,你必须在 原地 修改输入数组 并在使用 O(1) 额外空间的条件下完成。说明:为什么返回数值是整数,但输出的答案是数组呢?请注意,输入数组是以「引用」方式传递的,这意味着在函数里修改输入数组对于调用者是可见的。你可以想象内部操作如下:// nums 是以“引用”方式传递的。也就是说,不对实参做任何拷贝int len = removeDuplicate

    2022年8月8日
    5

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号