傅立叶变换的物理意义

1、为什么要进行傅里叶变换,其物理意义是什么?傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

1、为什么要进行傅里叶变换,其物理意义是什么?

        傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。

       和傅立叶变换算法对应的是反傅立叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。

       因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。

       从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。

       在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。”任意”的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:

       1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;

       2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;

       3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;

       4. 著名的卷积定理指出:傅立叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT))。

       5. 离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;

       正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。http://hovertree.com/

2、图像傅立叶变换的物理意义

       图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数

       傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示空间上各点,则图像可由z=f(x,y)来表示。由于空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并不存在一一对应的关系,即使在不移频的情况下也是没有。傅立叶频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。这样通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分离出有周期性规律的干扰信号,比如正弦干扰,一副带有正弦干扰,移频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻滤波器消除干扰

注:

       1、图像经过二维傅立叶变换后,其变换系数矩阵表明:

       若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所用的二维傅立叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅立叶变换本身性质决定的。同时也表明一股图像能量集中低频区域。

       2 、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大)

http://www.cnblogs.com/roucheng/

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/120392.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • selenium自动化测试实战基于python_初级java工程师要求

    selenium自动化测试实战基于python_初级java工程师要求一、Selenium介绍Selenium是什么?一句话,自动化测试工具。它支持各种浏览器,包括Chrome,Safari,Firefox等主流界面式浏览器,如果你在这些浏览器里面安装一个Selenium的插件,那么便可以方便地实现Web界面的测试。Selenium2,又名WebDriver,它的主要新功能是集成了Selenium1.0以及WebDriver(WebDr…

    2022年10月4日
    4
  • 数据建模之ODS层命名规范及质量规范

    数据建模之ODS层命名规范及质量规范命名规范表命名规范表命名规则:{层次}{源系统表名}{保留位/delta与否}。 增量数据:ods_{库名}_{表名}_{id}。 全量数据:ods_{库名}_{表名}。 ODSETL过程的临时表:tmp_{临时表所在过程的输出表}_{从0开始的序号}。 按小时同步的增量表:ods_{库名}_{表名}_{ih}。 按小时同步的全量表:ods_{库名}_{表名}_{hh}。 ps:如果库名可能重复,可使用编码来代替库名字段命名规范 字段默认使用源系统的字段名。 字段名与.

    2022年9月1日
    3
  • sql语句大全+实例讲解「建议收藏」

    sql语句大全+实例讲解「建议收藏」1.创建3张表//学生表创建CREATEtablestudent(SnoCHAR(9)PRIMARYKEY,SnameCHAR(20)UNIQUE,Ssexchar(2),SageSMALLINT,Sdeptchar(20));//课程表创建CREATEtablecourse(Cnochar(4)PRIMARYKEY,Cnamechar(40)notNULL,Cpnochar(4),CcreditSMALLINT);//学生选课表创

    2022年5月12日
    53
  • SPSS聚类分析——一个案例演示聚类分…「建议收藏」

    SPSS聚类分析——一个案例演示聚类分…「建议收藏」本文实际为2010年5月8日完成并发布的,浏览量:7199,评论数:5。http://hi.baidu.com/datasoldier/item/37abae32474bf7f1a884289f在百度新版空间升级过程中,该篇文章丢失,今天,重新更新并发布,作为SPSS案例分析系列的第17篇文章。同时希望百度新版空间能不断完善,在升级过程中尽量避免出现文章丢失的现象。案例数据源:有20种

    2022年10月18日
    8
  • 数据可视化软件在大数据时代的局限性「建议收藏」

    数据可视化软件在大数据时代的局限性「建议收藏」如今,数据可视化软件风靡起来,很多企业认为数据可视化软件是启用先进分析技术的入口。但对一些应用而言,情况并不是这样的。纽约市的非营利组织DonorsChoose致力于跟踪和分析当地学校获得的财务捐助。在它试图为学校管理者、当地国会议员和记者出具一份报告时,它意识到数据可视化软件并不是万能的。乍一看,数据可视化系统对这种非技术组织来说应该是最好的选择了,不过该组织的数据科学家VladDubovsk…

    2022年9月25日
    3
  • 素数算法总结

    素数算法总结素数算法总结转载自:_Wilbert在平时做题目或者进行预算的时候,素数的出现次数总是十分频繁。今天我们就来一点一点的说一说关于素数的一些算法。素数算法总结朴素判断素数算法Miller_Rabin素性测试筛选法容斥原理Meissel-Lehmer算法朴素判断素数算法就判断素数而言,事实上是非常简单的了。根据定义,判断一个整数n是否是素数,只需要去判断在整数区间[2,n-1]之内

    2022年6月18日
    23

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号