GoogLeNet系列解读「建议收藏」

GoogLeNet系列解读「建议收藏」本文介绍的是著名的网络结构GoogLeNet及其延伸版本,目的是试图领会其中的思想而不是单纯关注结构。GoogLeNetIncepetionV1MotivationArchitecturalDetailsGoogLeNetConclusionGoogLeNetInceptionV2IntroductionGeneralDesignPrinciplesFactorizi

大家好,又见面了,我是你们的朋友全栈君。

本文介绍的是著名的网络结构GoogLeNet及其延伸版本,目的是试图领会其中的思想而不是单纯关注结构

GoogLeNet Incepetion V1

这是GoogLeNet的最早版本,出现在2014年的《Going deeper with convolutions》。之所以名为“GoogLeNet”而非“GoogleNet”,文章说是为了向早期的LeNet致敬。

Motivation

深度学习以及神经网络快速发展,人们不再只关注更给力的硬件、更大的数据集、更大的模型,而是更在意新的idea、新的算法以及模型的改进。

一般来说,提升网络性能最直接的办法就是增加网络深度和宽度,这也就意味着巨量的参数。但是,巨量参数容易产生过拟合也会大大增加计算量

文章认为解决上述两个缺点的根本方法是将全连接甚至一般的卷积都转化为稀疏连接。一方面现实生物神经系统的连接也是稀疏的,另一方面有文献1表明:对于大规模稀疏的神经网络,可以通过分析激活值的统计特性和对高度相关的输出进行聚类来逐层构建出一个最优网络。这点表明臃肿的稀疏网络可能被不失性能地简化。 虽然数学证明有着严格的条件限制,但Hebbian准则有力地支持了这一点:fire together,wire together。

早些的时候,为了打破网络对称性和提高学习能力,传统的网络都使用了随机稀疏连接。但是,计算机软硬件对非均匀稀疏数据的计算效率很差,所以在AlexNet中又重新启用了全连接层,目的是为了更好地优化并行运算。

所以,现在的问题是有没有一种方法,既能保持网络结构的稀疏性,又能利用密集矩阵的高计算性能。大量的文献表明可以将稀疏矩阵聚类为较为密集的子矩阵来提高计算性能,据此论文提出了名为Inception 的结构来实现此目的。

Architectural Details

Inception 结构的主要思路是怎样用密集成分来近似最优的局部稀疏结构。
作者首先提出下图这样的基本结构:
这里写图片描述
对上图做以下说明:
1 . 采用不同大小的卷积核意味着不同大小的感受野,最后拼接意味着不同尺度特征的融合;
2 . 之所以卷积核大小采用1、3和5,主要是为了方便对齐。设定卷积步长stride=1之后,只要分别设定pad=0、1、2,那么卷积之后便可以得到相同维度的特征,然后这些特征就可以直接拼接在一起了;
3 . 文章说很多地方都表明pooling挺有效,所以Inception里面也嵌入了。
4 . 网络越到后面,特征越抽象,而且每个特征所涉及的感受野也更大了,因此随着层数的增加,3×3和5×5卷积的比例也要增加。

但是,使用5×5的卷积核仍然会带来巨大的计算量。 为此,文章借鉴NIN2,采用1×1卷积核来进行降维
例如:上一层的输出为100x100x128,经过具有256个输出的5×5卷积层之后(stride=1,pad=2),输出数据为100x100x256。其中,卷积层的参数为128x5x5x256。假如上一层输出先经过具有32个输出的1×1卷积层,再经过具有256个输出的5×5卷积层,那么最终的输出数据仍为为100x100x256,但卷积参数量已经减少为128x1x1x32 + 32x5x5x256,大约减少了4倍。

具体改进后的Inception Module如下图:
这里写图片描述

GoogLeNet

GoogLeNet的整体结构如下图:

这里写图片描述

对上图做如下说明:
1 . 显然GoogLeNet采用了模块化的结构,方便增添和修改;
2 . 网络最后采用了average pooling来代替全连接层,想法来自NIN,事实证明可以将TOP1 accuracy提高0.6%。但是,实际在最后还是加了一个全连接层,主要是为了方便以后大家finetune;
3 . 虽然移除了全连接,但是网络中依然使用了Dropout ;
4 . 为了避免梯度消失,网络额外增加了2个辅助的softmax用于向前传导梯度。文章中说这两个辅助的分类器的loss应该加一个衰减系数,但看caffe中的model也没有加任何衰减。此外,实际测试的时候,这两个额外的softmax会被去掉。

下图是一个比较清晰的结构图:

这里写图片描述

Conclusion

GoogLeNet是谷歌团队为了参加ILSVRC 2014比赛而精心准备的,为了达到最佳的性能,除了使用上述的网络结构外,还做了大量的辅助工作:包括训练多个model求平均、裁剪不同尺度的图像做多次验证等等。详细的这些可以参看文章的实验部分。

本文的主要想法其实是想通过构建密集的块结构来近似最优的稀疏结构,从而达到提高性能而又不大量增加计算量的目的。GoogleNet的caffemodel大小约50M,但性能却很优异。

GoogLeNet Inception V2

GoogLeNet凭借其优秀的表现,得到了很多研究人员的学习和使用,因此Google团队又对其进行了进一步发掘改进,产生了升级版本的GoogLeNet。这一节介绍的版本记为V2,文章为:《Rethinking the Inception Architecture for Computer Vision》

Introduction

14年以来,构建更深的网络逐渐成为主流,但是模型的变大也使计算效率越来越低。这里,文章试图找到一种方法在扩大网络的同时又尽可能地发挥计算性能

首先,GoogLeNet V1出现的同期,性能与之接近的大概只有VGGNet了,并且二者在图像分类之外的很多领域都得到了成功的应用。但是相比之下,GoogLeNet的计算效率明显高于VGGNet,大约只有500万参数,只相当于Alexnet的1/12(GoogLeNet的caffemodel大约50M,VGGNet的caffemodel则要超过600M)。

GoogLeNet的表现很好,但是,如果想要通过简单地放大Inception结构来构建更大的网络,则会立即提高计算消耗。此外,在V1版本中,文章也没给出有关构建Inception结构注意事项的清晰描述。因此,在文章中作者首先给出了一些已经被证明有效的用于放大网络的通用准则和优化方法。这些准则和方法适用但不局限于Inception结构。

General Design Principles

下面的准则来源于大量的实验,因此包含一定的推测,但实际证明基本都是有效的。

1 . 避免表达瓶颈,特别是在网络靠前的地方。 信息流前向传播过程中显然不能经过高度压缩的层,即表达瓶颈。从input到output,feature map的宽和高基本都会逐渐变小,但是不能一下子就变得很小。比如你上来就来个kernel = 7, stride = 5 ,这样显然不合适。
另外输出的维度channel,一般来说会逐渐增多(每层的num_output),否则网络会很难训练。(特征维度并不代表信息的多少,只是作为一种估计的手段)

2 . 高维特征更易处理。 高维特征更易区分,会加快训练。

3. 可以在低维嵌入上进行空间汇聚而无需担心丢失很多信息。 比如在进行3×3卷积之前,可以对输入先进行降维而不会产生严重的后果。假设信息可以被简单压缩,那么训练就会加快。

4 . 平衡网络的宽度与深度。

上述的这些并不能直接用来提高网络质量,而仅用来在大环境下作指导。

Factorizing Convolutions with Large Filter Size

大尺寸的卷积核可以带来更大的感受野,但也意味着更多的参数,比如5×5卷积核参数是3×3卷积核的25/9=2.78倍。为此,作者提出可以用2个连续的3×3卷积层(stride=1)组成的小网络来代替单个的5×5卷积层,(保持感受野范围的同时又减少了参数量)如下图:
这里写图片描述
然后就会有2个疑问:

1 . 这种替代会造成表达能力的下降吗?
后面有大量实验可以表明不会造成表达缺失;

2 . 3×3卷积之后还要再加激活吗?
作者也做了对比试验,表明添加非线性激活会提高性能

从上面来看,大卷积核完全可以由一系列的3×3卷积核来替代,那能不能分解的更小一点呢。文章考虑了 nx1 卷积核
如下图所示的取代3×3卷积:
这里写图片描述

于是,任意nxn的卷积都可以通过1xn卷积后接nx1卷积来替代。实际上,作者发现在网络的前期使用这种分解效果并不好,还有在中度大小的feature map上使用效果才会更好。(对于mxm大小的feature map,建议m在12到20之间)。

总结如下图:

这里写图片描述

(1) 图4是GoogLeNet V1中使用的Inception结构;

(2) 图5是用3×3卷积序列来代替大卷积核;

(3) 图6是用nx1卷积来代替大卷积核,这里设定n=7来应对17×17大小的feature map。该结构被正式用在GoogLeNet V2中。

未完待续


  1. Sanjeev Arora, Aditya Bhaskara, Rong Ge, and Tengyu Ma. Provable bounds for learning some deep representations. CoRR, abs/1310.6343, 2013.
  2. Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. CoRR, abs/1312.4400, 2013.
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/125097.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 银行风控模型

    银行风控模型风控催生原因对于银行来说,现今互联网贷款和信用卡办理面临的主要难题是数据和风控。站在银行或金融机构角度,自然而然是想获得更多的信息和数据,但是在收集数据这方面又是比较无力的。加上当下的发展趋势,消费贷以及贷款审批速度都要求快。如何在快的的过程中对客户进行一个全面的审查,得出一个合理的结果呢?如果没有详细的数据对客户进行评估,这势必会提高放贷的风险。风控概述所谓风控,是指多银行贷款资金的…

    2022年6月13日
    35
  • SQL连接操作符介绍(循环嵌套, 哈希匹配和合并连接)

    SQL连接操作符介绍(循环嵌套, 哈希匹配和合并连接)

    2021年11月28日
    48
  • 【OpenGrok代码搜索引擎】四、OpenGrok使用指南

    【OpenGrok代码搜索引擎】四、OpenGrok使用指南三、智能窗口四、差异跳转

    2022年4月30日
    142
  • Win10文件资源管理器右键卡死「建议收藏」

    Win10文件资源管理器右键卡死「建议收藏」Windows10文件资源管理器操作变慢Windows10自动更新太烦人了,尝试了很多中方法也没禁用成功。昨天自动更新以后,今天使用Windows10,发现文件资源管理器打开的时候慢了很多,打开之后里面的文件夹、文件图标要好久才能显示正常。然后想在文件资源管理器里右键某个文件之后,文件资源管理器就卡死了。此时系统其他部分,如网页浏览器,其他功能软件运行正常。这样确定不是系统卡死,而只是文件资源管……

    2022年9月4日
    6
  • origin画图数据_origin多元线性回归拟合

    origin画图数据_origin多元线性回归拟合制图完成效果图如下。1.原始数据为真实值与预测值。2.另外两列是制作中间的标准线。优化直线。3.4.对预测值与真实值的图进行优化。5.将标准线图层复制到当前页面,ctrl+C,V就行了。将标准线的网格删除。将线移动到该有的位置即可。对周围的字体大小等修正后即可。…

    2022年9月21日
    0
  • 删除office2016专业版多余组件

    删除office2016专业版多余组件一、首先打开控制面板,选择卸载程序,选中office2016专业版,如图所示,右击选择“更改”进入如下的图片,选择添加或删除功能选择要删除或卸载的组件,点击选择“不可用”;然后就会出现如图所示的图片最后关闭即可…

    2022年7月19日
    41

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号