详解 MNIST 数据集

MNIST数据集已经是一个被”嚼烂”了的数据集,很多教程都会对它”下手”,几乎成为一个“典范”.不过有些人可能对它还不是很了解,下面来介绍一下.MNIST数据集可在http://yann.lecun.com/exdb/mnist/获取,它包含了四个部分:Trainingsetimages:train-images-idx3-ubyte.gz(9.9MB,解压后47

大家好,又见面了,我是你们的朋友全栈君。

MNIST 数据集已经是一个被”嚼烂”了的数据集, 很多教程都会对它”下手”, 几乎成为一个 “典范”. 不过有些人可能对它还不是很了解, 下面来介绍一下.

MNIST 数据集可在 http://yann.lecun.com/exdb/mnist/ 获取, 它包含了四个部分:

  • Training set images: train-images-idx3-ubyte.gz (9.9 MB, 解压后 47 MB, 包含 60,000 个样本)
  • Training set labels: train-labels-idx1-ubyte.gz (29 KB, 解压后 60 KB, 包含 60,000 个标签)
  • Test set images: t10k-images-idx3-ubyte.gz (1.6 MB, 解压后 7.8 MB, 包含 10,000 个样本)
  • Test set labels: t10k-labels-idx1-ubyte.gz (5KB, 解压后 10 KB, 包含 10,000 个标签)

MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字数据.

不妨新建一个文件夹 – mnist, 将数据集下载到 mnist 以后, 解压即可:

dataset

图片是以字节的形式进行存储, 我们需要把它们读取到 NumPy array 中, 以便训练和测试算法.

import os
import struct
import numpy as np

def load_mnist(path, kind='train'):
    """Load MNIST data from `path`"""
    labels_path = os.path.join(path,
                               '%s-labels-idx1-ubyte'
                               % kind)
    images_path = os.path.join(path,
                               '%s-images-idx3-ubyte'
                               % kind)
    with open(labels_path, 'rb') as lbpath:
        magic, n = struct.unpack('>II',
                                 lbpath.read(8))
        labels = np.fromfile(lbpath,
                             dtype=np.uint8)

    with open(images_path, 'rb') as imgpath:
        magic, num, rows, cols = struct.unpack('>IIII',
                                               imgpath.read(16))
        images = np.fromfile(imgpath,
                             dtype=np.uint8).reshape(len(labels), 784)

    return images, labels

load_mnist 函数返回两个数组, 第一个是一个 n x m 维的 NumPy array(images), 这里的 n 是样本数(行数), m 是特征数(列数). 训练数据集包含 60,000 个样本, 测试数据集包含 10,000 样本. 在 MNIST 数据集中的每张图片由 28 x 28 个像素点构成, 每个像素点用一个灰度值表示. 在这里, 我们将 28 x 28 的像素展开为一个一维的行向量, 这些行向量就是图片数组里的行(每行 784 个值, 或者说每行就是代表了一张图片). load_mnist 函数返回的第二个数组(labels) 包含了相应的目标变量, 也就是手写数字的类标签(整数 0-9).

第一次见的话, 可能会觉得我们读取图片的方式有点奇怪:

magic, n = struct.unpack('>II', lbpath.read(8))
labels = np.fromfile(lbpath, dtype=np.uint8)

为了理解这两行代码, 我们先来看一下 MNIST 网站上对数据集的介绍:

TRAINING SET LABEL FILE (train-labels-idx1-ubyte):

[offset] [type]          [value]          [description] 
0000     32 bit integer  0x00000801(2049) magic number (MSB first) 
0004     32 bit integer  60000            number of items 
0008     unsigned byte   ??               label 
0009     unsigned byte   ??               label 
........ 
xxxx     unsigned byte   ??               label
The labels values are 0 to 9.

通过使用上面两行代码, 我们首先读入 magic number, 它是一个文件协议的描述, 也是在我们调用 fromfile 方法将字节读入 NumPy array 之前在文件缓冲中的 item 数(n). 作为参数值传入 struct.unpack>II 有两个部分:

  • >: 这是指大端(用来定义字节是如何存储的); 如果你还不知道什么是大端和小端, Endianness 是一个非常好的解释. (关于大小端, 更多内容可见<<深入理解计算机系统 – 2.1 节信息存储>>)
  • I: 这是指一个无符号整数.

通过执行下面的代码, 我们将会从刚刚解压 MNIST 数据集后的 mnist 目录下加载 60,000 个训练样本和 10,000 个测试样本.

为了了解 MNIST 中的图片看起来到底是个啥, 让我们来对它们进行可视化处理. 从 feature matrix 中将 784-像素值 的向量 reshape 为之前的 28*28 的形状, 然后通过 matplotlib 的 imshow 函数进行绘制:

import matplotlib.pyplot as plt

fig, ax = plt.subplots(
    nrows=2,
    ncols=5,
    sharex=True,
    sharey=True, )

ax = ax.flatten()
for i in range(10):
    img = X_train[y_train == i][0].reshape(28, 28)
    ax[i].imshow(img, cmap='Greys', interpolation='nearest')

ax[0].set_xticks([])
ax[0].set_yticks([])
plt.tight_layout()
plt.show()

我们现在应该可以看到一个 2*5 的图片, 里面分别是 0-9 单个数字的图片.

0-9

此外, 我们还可以绘制某一数字的多个样本图片, 来看一下这些手写样本到底有多不同:

fig, ax = plt.subplots(
    nrows=5,
    ncols=5,
    sharex=True,
    sharey=True, )

ax = ax.flatten()
for i in range(25):
    img = X_train[y_train == 7][i].reshape(28, 28)
    ax[i].imshow(img, cmap='Greys', interpolation='nearest')

ax[0].set_xticks([])
ax[0].set_yticks([])
plt.tight_layout()
plt.show()

执行上面的代码后, 我们应该看到数字 7 的 25 个不同形态:

7

另外, 我们也可以选择将 MNIST 图片数据和标签保存为 CSV 文件, 这样就可以在不支持特殊的字节格式的程序中打开数据集. 但是, 有一点要说明, CSV 的文件格式将会占用更多的磁盘空间, 如下所示:

  • train_img.csv: 109.5 MB
  • train_labels.csv: 120 KB
  • test_img.csv: 18.3 MB
  • test_labels: 20 KB

如果我们打算保存这些 CSV 文件, 在将 MNIST 数据集加载入 NumPy array 以后, 我们应该执行下列代码:

np.savetxt('train_img.csv', X_train,
           fmt='%i', delimiter=',')
np.savetxt('train_labels.csv', y_train,
           fmt='%i', delimiter=',')
np.savetxt('test_img.csv', X_test,
           fmt='%i', delimiter=',')
np.savetxt('test_labels.csv', y_test,
           fmt='%i', delimiter=',')

一旦将数据集保存为 CSV 文件, 我们也可以用 NumPy 的 genfromtxt 函数重新将它们加载入程序中:

X_train = np.genfromtxt('train_img.csv',
                        dtype=int, delimiter=',')
y_train = np.genfromtxt('train_labels.csv',
                        dtype=int, delimiter=',')
X_test = np.genfromtxt('test_img.csv',
                       dtype=int, delimiter=',')
y_test = np.genfromtxt('test_labels.csv',
                       dtype=int, delimiter=',')

不过, 从 CSV 文件中加载 MNIST 数据将会显著发给更长的时间, 因此如果可能的话, 还是建议你维持数据集原有的字节格式.

参考:
– Book , Python Machine Learning.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/125840.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • python如何多行输出_python换行输出 Python里具体怎么用\n换行输出一个数字?[通俗易懂]

    python里如何把每打印10个数就换行的实现print(“每输出十个数字换行,共计输出100个:”)fornuminrange(1,100):#循环一百次print(“%3d”%num,end=””)#不换行输出if(num%10==0):print(“”)#换行输出人的一生要有多艰难,多坎坷而又要多幸运,多凑巧,才能遇到一个绊住自己心的人。如何用python将内…

    2022年4月10日
    89
  • 链表排序总结(全)(C++)[通俗易懂]

    链表排序总结(全)(C++)[通俗易懂]文章目录链表排序与数组排序的区别借助外部空间冒泡排序插入排序归并排序快速排序链表排序与数组排序的区别数组的排序几乎所有人都很熟悉了,常用的算法插入、冒泡、归并以及快排等都会或多或少依赖于数组可以在O(1)时间随机访问的特点。链表排序一般指单链表排序,链表是不支持随机访问的,需要访问后面的节点只能从表头顺序遍历,所以链表的排序是一个相对比较复杂的问题。那么怎样进行链表排序呢?借助外部空间既然数组排序简单,那可以借助数组进行排序:把链表中的值一次遍历导入数组(时间复杂度O(n))对数组进行排序

    2022年10月11日
    2
  • 美团面试中被问到的问题汇总

    美团面试中被问到的问题汇总

    2022年1月22日
    77
  • n皇后问题 回溯法java_Java解决N皇后问题

    n皇后问题 回溯法java_Java解决N皇后问题问题描述:   要求在一个n×n的棋盘上放置n个皇后,使得它们彼此不受攻击。   按照国际象棋的规则,一个皇后可以攻击与之同一行或同一列或同一斜线上的任何棋子。   因此,n皇后问题等价于:要求在一个n×n的棋盘上放置n个皇后,使得任意两个皇后不在同一行或同一列或同一斜线上。一个皇后的攻击范围:                                    n皇后的解空间—完全n叉树…

    2022年9月30日
    2
  • FPN网络和RPN网络介绍[通俗易懂]

    FPN网络和RPN网络介绍[通俗易懂]原文链接神经网络特征提取过程中,一般底层特征具有良好的空间信息,高层的具有良好的语义信息。原来多数的objectdetection算法都是只采用顶层特征做预测,但我们知道低层的特征语义信息比较少,但是目标位置准确;高层的特征语义信息比较丰富,但是目标位置比较粗略。另外虽然也有些算法采用多尺度特征融合的方式,但是一般是采用融合后的特征做预测,而本文不一样的地方在于预测是在…

    2022年6月23日
    65
  • weka中文论坛

    weka中文论坛

    2021年8月15日
    91

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号