超分辨率重建SRCNN–Matlab 7.0中运行

终于找到一个可以在自己电脑中运行的超分辨率重建程序了,Matlab7.0真的是太老了(实际上是自己的笔记本太老了,哈哈)demo_SR.m%=========================================================================%超分辨率卷积神经网络(SRCNN)的测试码%%参考文献%ChaoDong,C…

大家好,又见面了,我是你们的朋友全栈君。

终于找到一个可以在自己电脑中运行的超分辨率重建程序了,Matlab 7.0真的是太老了(实际上是自己的笔记本太老了,哈哈)

demo_SR.m

% =========================================================================
% 超分辨率卷积神经网络(SRCNN)的测试码
%
% 参考文献
%   Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang. 
%   学习深度卷积网络的图像超分辨率,欧洲计算机视觉会议记录,2014年
%
% Chao Dong
% 香港中文大学工业工程系
% 如有任何问题,请发电子邮件至 ndc.forward@gmail.com
% =========================================================================

close all;
clear all;

%% 读取真实图像
im  = imread('Set5\butterfly_GT.bmp');
%im  = imread('Set14\zebra.bmp');

%% 设定参数
up_scale = 3;
model = 'model\x3.mat';
% up_scale = 2;
% model = 'model\x2.mat'; 
% up_scale = 4;
% model = 'model\x4.mat';

%% 仅在照度方面工作
if size(im,3)>1
    im = rgb2ycbcr(im);
    im = im(:, :, 1);
end
im_gnd = modcrop(im, up_scale);
im_gnd = double(im_gnd)/255;%single 这里换成double Matlab 7.0就可以运行了

%% 双三次插值
im_l = imresize(im_gnd, 1/up_scale, 'bicubic'); %缩小
im_b = imresize(im_l, up_scale, 'bicubic');%再放大

%% SRCNN
im_h = SRCNN(model, im_b);

%% 删除边框
im_h = shave(uint8(im_h * 255), [up_scale, up_scale]);
im_gnd = shave(uint8(im_gnd * 255), [up_scale, up_scale]);
im_b = shave(uint8(im_b * 255), [up_scale, up_scale]);

%% 计算 PSNR
psnr_bic = compute_psnr(im_gnd,im_b);
psnr_srcnn = compute_psnr(im_gnd,im_h);

%% 显示结果
fprintf('双三次插值的峰值信噪比: %f dB\n', psnr_bic);
fprintf('SRCNN 重建的峰值信噪比: %f dB\n', psnr_srcnn);

figure, imshow(im_b); title('双三次插值');
figure, imshow(im_h); title('SRCNN 重建');

imwrite(im_b, ['双三次插值' '.bmp']);
imwrite(im_h, ['SRCNN 重建' '.bmp']);

这个演示先把图像缩小了再来超分辨率重建放大只能说明某种对比效果,

用自己的图像重建才有趣:

% 超分辨率重建(卷积神经网络(SRCNN))单色
%
% 设定参数:文件名、放大倍数

close all;clear all;
% 文件名
name='6b.jpg';%'7b.png'; 

% 放大倍率 2,3 或 4 倍
up_scale = 3;

%% 读取一个图像
im  = imread(name);


if up_scale == 3
	model = 'model\x3.mat';
else 
    if up_scale == 4
        model = 'model\x4.mat';
    else
        up_scale = 2;
        model = 'model\x2.mat'; 
    end
end

%% 仅在照度方面工作
% 对YCrCb颜色空间中的Y通道进行重建
if size(im,3)>1
    im = rgb2ycbcr(im);
    im = im(:, :, 1);
end
%调整图像大小(与放大率匹配的)
%im_gnd = modcrop(im, up_scale);
im_gnd = double(im_gnd)/255;%single

%% 双三次插值
% 先将低分辨率图像使用双三次差值放大至目标尺寸(如放大至2倍、3倍、4倍)
im_b = imresize(im_gnd, up_scale, 'bicubic');

%% SRCNN
im_h = SRCNN(model, im_b);

im_h=uint8(im_h * 255);


figure, imshow(im_h); title('SRCNN 重建');

%保存结果
imwrite(im_h, ['SRCNN 重建' '.jpg']);

输入图:

超分辨率重建SRCNN--Matlab 7.0中运行

重建图(分别是 2、3、4倍):

超分辨率重建SRCNN--Matlab 7.0中运行超分辨率重建SRCNN--Matlab 7.0中运行超分辨率重建SRCNN--Matlab 7.0中运行

这是单色。

再把颜色加上去(颜色部分只是双三次放大,毕竟重建速度慢)

% 超分辨率重建(卷积神经网络(SRCNN))
%
% 设定参数:文件名、放大倍数

close all;clear all;
% 文件名
name='6b.jpg';%'7b.png'; 

% 放大倍率 2,3 或 4 倍
up_scale = 3;

%% 读取一个图像
im  = imread(name);


if up_scale == 3
	model = 'model\x3.mat';
else 
    if up_scale == 4
        model = 'model\x4.mat';
    else
        up_scale = 2;
        model = 'model\x2.mat'; 
    end
end

%调整图像大小(与放大率匹配的)
%im = modcrop(im, up_scale);
im = double(im)/255;%single

%% 双三次插值
% 先将低分辨率图像使用双三次差值放大至目标尺寸(如放大至2倍、3倍、4倍)
im = imresize(im, up_scale, 'bicubic');

%% 仅在照度方面工作
if size(im,3)>1
    im = rgb2ycbcr(im);
    im_b = im(:, :, 1);%1、2、3分别是Y、Cr、Cb
    im2 = im(:, :, 2);
    im3 = im(:, :, 3);
else
    im_b=im;
end

%% SRCNN
im_h = SRCNN(model, im_b);% 对YCrCb颜色空间中的Y通道进行重建

if size(im,3)>1
    [m,n]=size(im_h);
    im_h1=zeros(m,n,3);%三通道合回
    im_h1(:,:,1)=im_h;
    im_h1(:,:,2)=im2;
    im_h1(:,:,3)=im3;
    im_h1 = uint8(im_h1 * 255);%转回uint8
    im_h1 = ycbcr2rgb(im_h1);%转回rgb
else
    im_h1=uint8(im_h * 255);
end

%% 删除边框
%im_h1 = shave(im_h1, [up_scale, up_scale]);

figure, imshow(im_h1); title('SRCNN 重建');%显示

%保存结果
imwrite(im_h1, ['SRCNN 重建' '.jpg']);

超分辨率重建SRCNN--Matlab 7.0中运行超分辨率重建SRCNN--Matlab 7.0中运行超分辨率重建SRCNN--Matlab 7.0中运行

重复3倍试试 3×3=9倍:

超分辨率重建SRCNN--Matlab 7.0中运行

听说这个SRCNN是最简单的,效果还是很不错的。

如要运行,先去

http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html

下matlab包。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/125931.html原文链接:https://javaforall.net

(1)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 负数的二进制表示方法「建议收藏」

    负数的二进制表示方法「建议收藏」负数的二进制表示方法假设有一个int类型的数,值为3,那么,我们知道它在计算机中表示为:00000000000000000000000000000011因为int类型的数占用4字节(32位),所以前面填了一堆0。在计算机中,负数以其正值的补码形式表达。什么叫补码呢?这得先从原码,反码说起。原码:一个整数,按照绝对值大小转换成的二进制数,称为原码。比如

    2025年6月5日
    4
  • python——循环(for循环、while循环)及练习

    python——循环(for循环、while循环)及练习目标程序的三大流程1.while循环的基本使用 2.break和continue 3.while循环嵌套在程序开发中,一共有三种流程方式:顺序:从上向下,顺序执行代码 分支:根据条件判断,决定执行代码的分支 循环:让特定代码重复执行(解决程序员重复工作)一、for循环1、基本用法for循环使用的语法:“”"for变量inrange(10):循环…

    2022年8月12日
    8
  • 2021年1月25日博客日记「建议收藏」

    2021年1月25日博客日记「建议收藏」今天尝试了一下ART-PI的串口终端,发现使用串口就可以向板子发送shell命令,这可能就是他的操作系统吧!还不是很清楚,接着摸索这个操作系统究竟是怎么回事?成功驱动OLED显示屏,网上找到的例子好像不对,按着他的就不行,瞎鼓捣了一下发现可以,oled显示屏太low了,可能配不上这个板子,打算买个RGB的显示屏,一开淘宝上,快两百块钱了,群友打算出二手显示屏,算上OV6070摄像头、运费、还有转接板一共在150左右,虽然也不怎么便宜,但是人家已经在ART上面做过测试了,能正常运行,他不给代码,还是得自己去研

    2022年5月31日
    29
  • VS2019 Qt开发环境搭建与配置

    VS2019 Qt开发环境搭建与配置Qt是很优秀的图形界面跨平台开发框架,开发语言可以用C++,也可以用python,建议使用C++。windows上Qt开发环境可以使用QtCreator,也可以使用VS+Qt,VS开发调试功能强大,本篇介绍VS2019+Qt5.14开发环境的配置,其它版本的类似。VS下载链接:https://visualstudio.microsoft.com/zh-hans/vs/VS2019C++主要安装模块:不…

    2022年5月16日
    37
  • Google Buzz 里 90% 的内容都是 “非人类”「建议收藏」

    Google Buzz 里 90% 的内容都是 “非人类”「建议收藏」距GoogleBuzz发布还不到10周,尽管Google一直在改进它,但似乎人们还是没有陷入Google的社交圈子。来自PostRank的统计,有90%的GoogleBuzz都是机器人发出来的,其中最多的是从twitter同步过来的内容,占到62%还多,而来自feeds的也有26%多,尽有不到11%的内容是真实的人肉发出来的。也就是说,GoogleBuzz的用户们还是习…

    2022年10月15日
    2
  • NetBIOS主机名扫描工具nbtscan「建议收藏」

    NetBIOS主机名扫描工具nbtscan「建议收藏」NetBIOS主机名扫描工具nbtscan

    2022年8月30日
    2

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号