超分辨率重建SRCNN–Matlab 7.0中运行

终于找到一个可以在自己电脑中运行的超分辨率重建程序了,Matlab7.0真的是太老了(实际上是自己的笔记本太老了,哈哈)demo_SR.m%=========================================================================%超分辨率卷积神经网络(SRCNN)的测试码%%参考文献%ChaoDong,C…

大家好,又见面了,我是你们的朋友全栈君。

终于找到一个可以在自己电脑中运行的超分辨率重建程序了,Matlab 7.0真的是太老了(实际上是自己的笔记本太老了,哈哈)

demo_SR.m

% =========================================================================
% 超分辨率卷积神经网络(SRCNN)的测试码
%
% 参考文献
%   Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang. 
%   学习深度卷积网络的图像超分辨率,欧洲计算机视觉会议记录,2014年
%
% Chao Dong
% 香港中文大学工业工程系
% 如有任何问题,请发电子邮件至 ndc.forward@gmail.com
% =========================================================================

close all;
clear all;

%% 读取真实图像
im  = imread('Set5\butterfly_GT.bmp');
%im  = imread('Set14\zebra.bmp');

%% 设定参数
up_scale = 3;
model = 'model\x3.mat';
% up_scale = 2;
% model = 'model\x2.mat'; 
% up_scale = 4;
% model = 'model\x4.mat';

%% 仅在照度方面工作
if size(im,3)>1
    im = rgb2ycbcr(im);
    im = im(:, :, 1);
end
im_gnd = modcrop(im, up_scale);
im_gnd = double(im_gnd)/255;%single 这里换成double Matlab 7.0就可以运行了

%% 双三次插值
im_l = imresize(im_gnd, 1/up_scale, 'bicubic'); %缩小
im_b = imresize(im_l, up_scale, 'bicubic');%再放大

%% SRCNN
im_h = SRCNN(model, im_b);

%% 删除边框
im_h = shave(uint8(im_h * 255), [up_scale, up_scale]);
im_gnd = shave(uint8(im_gnd * 255), [up_scale, up_scale]);
im_b = shave(uint8(im_b * 255), [up_scale, up_scale]);

%% 计算 PSNR
psnr_bic = compute_psnr(im_gnd,im_b);
psnr_srcnn = compute_psnr(im_gnd,im_h);

%% 显示结果
fprintf('双三次插值的峰值信噪比: %f dB\n', psnr_bic);
fprintf('SRCNN 重建的峰值信噪比: %f dB\n', psnr_srcnn);

figure, imshow(im_b); title('双三次插值');
figure, imshow(im_h); title('SRCNN 重建');

imwrite(im_b, ['双三次插值' '.bmp']);
imwrite(im_h, ['SRCNN 重建' '.bmp']);

这个演示先把图像缩小了再来超分辨率重建放大只能说明某种对比效果,

用自己的图像重建才有趣:

% 超分辨率重建(卷积神经网络(SRCNN))单色
%
% 设定参数:文件名、放大倍数

close all;clear all;
% 文件名
name='6b.jpg';%'7b.png'; 

% 放大倍率 2,3 或 4 倍
up_scale = 3;

%% 读取一个图像
im  = imread(name);


if up_scale == 3
	model = 'model\x3.mat';
else 
    if up_scale == 4
        model = 'model\x4.mat';
    else
        up_scale = 2;
        model = 'model\x2.mat'; 
    end
end

%% 仅在照度方面工作
% 对YCrCb颜色空间中的Y通道进行重建
if size(im,3)>1
    im = rgb2ycbcr(im);
    im = im(:, :, 1);
end
%调整图像大小(与放大率匹配的)
%im_gnd = modcrop(im, up_scale);
im_gnd = double(im_gnd)/255;%single

%% 双三次插值
% 先将低分辨率图像使用双三次差值放大至目标尺寸(如放大至2倍、3倍、4倍)
im_b = imresize(im_gnd, up_scale, 'bicubic');

%% SRCNN
im_h = SRCNN(model, im_b);

im_h=uint8(im_h * 255);


figure, imshow(im_h); title('SRCNN 重建');

%保存结果
imwrite(im_h, ['SRCNN 重建' '.jpg']);

输入图:

超分辨率重建SRCNN--Matlab 7.0中运行

重建图(分别是 2、3、4倍):

超分辨率重建SRCNN--Matlab 7.0中运行超分辨率重建SRCNN--Matlab 7.0中运行超分辨率重建SRCNN--Matlab 7.0中运行

这是单色。

再把颜色加上去(颜色部分只是双三次放大,毕竟重建速度慢)

% 超分辨率重建(卷积神经网络(SRCNN))
%
% 设定参数:文件名、放大倍数

close all;clear all;
% 文件名
name='6b.jpg';%'7b.png'; 

% 放大倍率 2,3 或 4 倍
up_scale = 3;

%% 读取一个图像
im  = imread(name);


if up_scale == 3
	model = 'model\x3.mat';
else 
    if up_scale == 4
        model = 'model\x4.mat';
    else
        up_scale = 2;
        model = 'model\x2.mat'; 
    end
end

%调整图像大小(与放大率匹配的)
%im = modcrop(im, up_scale);
im = double(im)/255;%single

%% 双三次插值
% 先将低分辨率图像使用双三次差值放大至目标尺寸(如放大至2倍、3倍、4倍)
im = imresize(im, up_scale, 'bicubic');

%% 仅在照度方面工作
if size(im,3)>1
    im = rgb2ycbcr(im);
    im_b = im(:, :, 1);%1、2、3分别是Y、Cr、Cb
    im2 = im(:, :, 2);
    im3 = im(:, :, 3);
else
    im_b=im;
end

%% SRCNN
im_h = SRCNN(model, im_b);% 对YCrCb颜色空间中的Y通道进行重建

if size(im,3)>1
    [m,n]=size(im_h);
    im_h1=zeros(m,n,3);%三通道合回
    im_h1(:,:,1)=im_h;
    im_h1(:,:,2)=im2;
    im_h1(:,:,3)=im3;
    im_h1 = uint8(im_h1 * 255);%转回uint8
    im_h1 = ycbcr2rgb(im_h1);%转回rgb
else
    im_h1=uint8(im_h * 255);
end

%% 删除边框
%im_h1 = shave(im_h1, [up_scale, up_scale]);

figure, imshow(im_h1); title('SRCNN 重建');%显示

%保存结果
imwrite(im_h1, ['SRCNN 重建' '.jpg']);

超分辨率重建SRCNN--Matlab 7.0中运行超分辨率重建SRCNN--Matlab 7.0中运行超分辨率重建SRCNN--Matlab 7.0中运行

重复3倍试试 3×3=9倍:

超分辨率重建SRCNN--Matlab 7.0中运行

听说这个SRCNN是最简单的,效果还是很不错的。

如要运行,先去

http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html

下matlab包。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/125931.html原文链接:https://javaforall.net

(1)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • ubuntu16.04安装pycharm_pycharmlinux安装

    ubuntu16.04安装pycharm_pycharmlinux安装1.安装包下载进入https://www.jetbrains.com/pycharm/download/download-thanks.html?platform=linux

    2022年8月27日
    2
  • 数仓分层(ODS、DWD、DWS、DWT、ADS)和数仓建模

    数仓分层(ODS、DWD、DWS、DWT、ADS)和数仓建模文章目录一、数仓分层数仓概念ODS(原始数据层)做了哪些事DWD(明细数据层)做了哪些事DWS(服务数据层)做了哪些事DWT(主题数据层)做了哪些事ADS(应用数据层)做了哪些事二、数仓建模常用的建模工具ODS层DWD层DWS层DWT层ADS层一、数仓分层数仓概念什么是数仓:数据仓库是为企业所有决策制定过程,提供所有系统数据支持的战略集合。通过对数据仓库中数据的分析,可以帮助企业改进业务流程、控制成本、提高产品质量等。数据仓库并不是数据的最终目的地,而是为数据最终的目的地做好准备。这些准

    2022年6月26日
    61
  • SIFT–尺度空间、高斯金字塔

    SIFT–尺度空间、高斯金字塔尺度空间高斯金字塔高斯模糊下采样高斯金字塔的构造过程差分高斯金字塔构造过程SIFT成名已久,但理解起来还是很难的,一在原作者Lowe的论文对细节提到的非常少,二在虽然网上有许多相应博文,但这些博文云里雾里,非常头疼,在查看了许多资料了,下面贴出我自己的一些理解,希望有所帮助。Lowe把SIFT分为四个阶段:构建尺度空间、关键点的定位、方向分配、特征描述符。下面分别从这四个阶段来阐述。尺度空

    2022年10月14日
    0
  • JVM调优工具

    JVM调优工具JVM调优工具Jconsole:jdk自带,功能简单,但是可以在系统有一定负荷的情况下使用。对垃圾回收算法有很详细的跟踪。JProfiler:商业软件,需要付费。功能强大。VisualVM:JDK自带,功能强大,与JProfiler类似。推荐。如何调优观察内存释放情况、集合类检查、对象树上面这些调优工具都提供了强大的功能,但是总的来说一般分为以下几类功能堆信息查…

    2022年6月1日
    34
  • Django(18)聚合函数

    Django(18)聚合函数前言orm模型中的聚合函数跟MySQL中的聚合函数作用是一致的,也有像Sum、Avg、Count、Max、Min,接下来我们逐个介绍聚合函数所有的聚合函数都是放在django.db.models

    2022年7月30日
    4
  • awakeFromNib小总结「建议收藏」

    awakeFromNib小总结「建议收藏」awakeFromNib在使用IB的时候才会涉及到此方法的使用,当.nib文件被载入的时候,会发送一个awakeFromNib的消息到.nib文件里的每一个对象,每一个对象都能够定义自己的awakeF

    2022年7月1日
    32

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号