tensorflow2.0手写数字识别(tensorflow手写体识别)

本节笔记作为Tensorflow的HelloWorld,用MNIST手写数字识别来探索Tensorflow。笔记的内容来自Tensorflow中文社区和黄文坚的《Tensorflow实战》,只作为自己复习总结。

大家好,又见面了,我是你们的朋友全栈君。

本节笔记作为 Tensorflow 的 Hello World,用 MNIST 手写数字识别来探索 Tensorflow。笔记的内容来自 Tensorflow 中文社区和黄文坚的《Tensorflow 实战》,只作为自己复习总结。

环境:

  • Windows 10
  • Anaconda 4.3.0
  • Spyder

本节笔记主要采用 Softmax Regression 算法,构建一个没有隐层的神经网络来实现 MNIST 手写数字识别。

1. MNIST 数据集加载

MNIST 数据集可以从MNIST官网下载。也可以通过 Tensorflow 提供的 input_data.py进行载入。

由于上述方法下载数据集比较慢,我已经把下载好的数据集上传到CSDN资源中,可以直接下载。

将下载好的数据集放到目录C:/Users/Administrator/.spyder-py3/MNIST_data/下。目录可以根据自己的喜好变换,只是代码中随之改变即可。

通过运行Tensorflow 提供的代码加载数据集:

from tensorflow.examples.tutorials.mnist import input_data

# 获取数据
mnist = input_data.read_data_sets("C:/Users/Administrator/.spyder-py3/MNIST_data/", one_hot=True)

MNIST数据集包含55000样本的训练集,5000样本的验证集,10000样本的测试集。 input_data.py 已经将下载好的数据集解压、重构图片和标签数据来组成新的数据集对象。

图像是28像素x28像素大小的灰度图片。空白部分全部为0,有笔迹的地方根据颜色深浅有0~1的取值,因此,每个样本有28×28=784维的特征,相当于展开为1维。

这里写图片描述

所以,训练集的特征是一个 55000×784 的 Tensor,第一纬度是图片编号,第二维度是图像像素点编号。而训练集的 Label(图片代表的是0~9中哪个数)是一个 55000×10 的 Tensor,10是10个种类的意思,进行 one-hot 编码 即只有一个值为1,其余为0,如数字0,对于 label 为[1,0,0,0,0,0,0,0,0,0]。

这里写图片描述

这里写图片描述

2. Softmax Regression 算法

数字都是0~9之间的,一共有10个类别,当对图片进行预测时,Softmax Regression 会对每一种类别估算一个概率,并将概率最大的那个数字作为结果输出。

Softmax Regression 将可以判定为某类的特征相加,然后将这些特征转化为判定是这一个类的概率。我们对图片的所以像素求一个加权和。如某个像素的灰度值大代表很有可能是数字n,这个像素权重就很大,反之,这个权重很有可能为负值。

特征公式:

这里写图片描述

b i b_i bi 为偏置值,就是这个数据本身的一些倾向。

然后用 softmax 函数把这些特征转换成概率 y y y :

这里写图片描述

对所有特征计算 softmax,并进行标准化(所有类别输出的概率值和为1):

这里写图片描述

判定为第 i 类的概率为:

这里写图片描述

Softmax Regression 流程如下:

这里写图片描述

转换为矩阵乘法:

这里写图片描述

这里写图片描述

写成公式如下:

这里写图片描述

3.实现模型

import tensorflow as tf
sess = tf.InteractiveSession()
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x,W) + b)

首先载入 Tensorflow 库,并创建一个新的 InteractiveSession ,之后的运算默认在这个 session 中。

  • placeholder:输入数据的地方,None 代表不限条数的输入,每条是784维的向量
  • Variable:存储模型参数,持久化的

4.训练模型

我们定义一个 loss 函数来描述模型对问题的分类精度。 Loss 越小,模型越精确。这里采用交叉熵:

这里写图片描述
其中,y 是我们预测的概率分布, y’ 是实际的分布。

y_ = tf.placeholder(tf.float32, [None,10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y),reduction_indices=[1]))

定义一个 placeholder 用于输入正确值,并计算交叉熵。

接着采用随机梯度下降法,步长为0.5进行训练。

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

训练模型,让模型循环训练1000次,每次随机从训练集去100条样本,以提高收敛速度。

for i in range(1000):
  batch_xs, batch_ys = mnist.train.next_batch(100)
  train_step.run({x: batch_xs, y_: batch_ys})

5.评估模型

我们通过判断实际值和预测值是否相同来评估模型,并计算准确率,准确率越高,分类越精确。

这里写图片描述

6.总结

实现的整个流程:

  1. 定义算法公式,也就是神经网络前向传播时的计算。
  2. 定义 loss ,选定优化器,并指定优化器优化 loss。
  3. 迭代地对数据进行训练。
  4. 在测试集或验证集上对准确率进行评测。

7.全部代码

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

# 获取数据
mnist = input_data.read_data_sets("C:/Users/Administrator/.spyder-py3/MNIST_data/", one_hot=True)

print('训练集信息:')
print(mnist.train.images.shape,mnist.train.labels.shape)
print('测试集信息:')
print(mnist.test.images.shape,mnist.test.labels.shape)
print('验证集信息:')
print(mnist.validation.images.shape,mnist.validation.labels.shape)

# 构建图
sess = tf.InteractiveSession()
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))

y = tf.nn.softmax(tf.matmul(x,W) + b)

y_ = tf.placeholder(tf.float32, [None,10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y),reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

# 进行训练
tf.global_variables_initializer().run()

for i in range(1000):
  batch_xs, batch_ys = mnist.train.next_batch(100)
  train_step.run({x: batch_xs, y_: batch_ys})

# 模型评估
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

print('MNIST手写图片准确率:')
print(accuracy.eval({x: mnist.test.images, y_: mnist.test.labels}))
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/126515.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • lefse分析本地实现方法带全部安装文件和所有细节,保证成功。

    lefse分析本地实现方法带全部安装文件和所有细节,保证成功。本人在win7-64和win10-64均完整安装使用,其他系统本人能力所限没安装成功。lefse本地分析包。()安装python2.7。()R语言3.6.1(这个应该是最新版就可以了应该无版本要求的,但我的是3.6.1就不提供下载地址了)这个是我总结的安装需求R语言:splines,stats4,survival,mvtnorm,modeltools,coin,MASS…

    2022年6月9日
    43
  • 数据结构与算法(3)

    数据结构与算法(3)

    2021年11月12日
    51
  • linux 权限详解rwx[通俗易懂]

    linux 权限详解rwx[通俗易懂]第2~10个字符当中的每3个为一组,左边三个字符表示所有者权限,中间3个字符表示与所有者同一组的用户的权限,右边3个字符是其他用户的权限。这三个一组共9个字符,代表的意义如下:r(Read,读取):对文件而言,具有读取文件内容的权限;对目录来说,具有浏览目录的权限。w(Write,写入):对文件而言,具有新增、修改文件内容的权限;对目录来说,具有删除、移动目录内文件的权限。x(eXec

    2022年6月1日
    92
  • Python在线编译器 C语言在线编译器

    Python在线编译器 C语言在线编译器Python在线编译器C语言在线编译器

    2022年7月5日
    26
  • autoconf介绍1

    autoconf介绍1这里简单整理下这本书的第三章:configureyourprojectwithautoconf书中介绍,循序渐进。第一步:介绍了autoconf和M4宏,并整体运行了一遍,介绍了相关脚本的调用顺序和文件作用。第二步:通过autoconf将Makefile中定义为@VARIABLE@的变量替换,并通过VPATH进行远程构建。第三步:借助autoscan生成configure.ac,并说明文件中的宏含义。

    2022年6月4日
    30
  • c++cstring头文件函数_c++源文件和头文件的作用与区别

    c++cstring头文件函数_c++源文件和头文件的作用与区别编程

    2025年9月7日
    5

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号