opencv跟踪视频上的目标(理论分析框架)

出处:http://hi.baidu.com/icekeydnet/blog/item/965b25154a19f3dea6ef3ffe.html如前面说到的,OpenCVVS提供了6组算法的接口,分别是:前景检测、新目标检测、目标跟踪、轨迹生成、跟踪后处理、轨迹分析,除了轨迹生成用于轨迹数据的保存以外,其他5个部分都是标准的视频监控算法体系中不可或缺的部分。      OpenC

大家好,又见面了,我是你们的朋友全栈君。

出处:http://hi.baidu.com/icekeydnet/blog/item/965b25154a19f3dea6ef3ffe.html

如前面说到的,OpenCV VS提供了6组算法的接口,分别是:前景检测、新目标检测、目标跟踪、轨迹生成、跟踪后处理、轨迹分析,除了轨迹生成用于轨迹数据的保存以外,其他5个部分都是标准的视频监控算法体系中不可或缺的部分。

       OpenCV在Blob_Tracking_Modules.doc文档中,提供了算法的关系图.

图中唯独缺少了轨迹分析部分,可能是因为在该文档形成的时候轨迹分析部分还没有完成。重新整理后如下。

 

下面针对VS算法体系中的各个算法接口进行介绍,并给出算法的参考文献。

1 算法流程控制(CvBlobTrackerAuto)

       整个视频监控算法流程的设置和数据的传递在接口类CvBlobTrackerAuto的子类中完成,VS中提供了一个范本,就是CvBlobTrackerAuto1,该类是接口CvBlobTrackerAuto的子类,通过查看CvBlobTrackerAuto1::Process(),可以洞悉整个算法的标准流程。当然您也可以在遵循接口CvBlobTrackerAuto的基础上进行扩展。

用户调用接口:

CvBlobTrackerAuto* cvCreateBlobTrackerAuto1(CvBlobTrackerAutoParam1* param);

 

2 前景检测(CvFGDetector):

       CvFGDetector是前景检测类的接口,前景检测一般是指提取固定场景中运动部分的像素,比较常用的一大类方法是背景差。在其子类CvFGDetectorBase中包含了两种背景差方法的实现:

(1)《Foreground Object Detection from Videos Containing Complex Background》2003

(2)《An Improved Adaptive Background Mixture Model for Real-time tracking with shadow detection》 2001

后者就被广泛研究和应用的混合高斯模型背景差(MOG-Mixture Of Gaussians),其开创者是MIT的著名学者Chris Stauffer,可参考文献《Learning patterns of activity using real-time tracking》2000。

       OpenCV中还实现了一种基于码本的背景差方法,《Real-time foreground–background segmentation using codebook model》2005,可以参考例程bgfg_codebook.cpp,只是这种算法还没有整合进VS架构中,这个扩展工作有待完成。

用户调用接口:

CvFGDetector* cvCreateFGDetectorBase(int type, void *param);

 

3 新目标检测(CvBlobDetector):

       CvBlobDetector在前景掩模的基础上检测新进入场景的Blob(块),子类有两个,分别是CvBlobDetectorSimple和CvBlobDetectorCC,参考文献为《Appearance Models for Occlusion Handling 》2001,检测新目标的基本原则是:当连续多帧图像中包含该连通区域,且具有一致的合理的速度。CvBlobDetectorCC与CvBlobDetectorSimple一个最显著的不同在于引入了 CvObjectDetector,用于检测分离的目标块。

用户调用接口:

CvBlobDetector* cvCreateBlobDetectorSimple();

CvBlobDetector* cvCreateBlobDetectorCC();

 

4 目标跟踪(CvBlobTracker):

       目标跟踪部分的子类众多,在这里不一一列举,给出相应的接口及对应的功能。对MeanShift和粒子滤波感兴趣的读者可参考:《Real-time tracking of non-rigid objects using mean shift》2000,《A Tutorial on Particle Filters for Online Nonlinear Non-Gaussian Bayesian Tracking》2002,《Particle Filters for Positioning, Navigation and Tracking》2002。

用户调用接口:

CvBlobTracker* cvCreateBlobTrackerCC();

连通区域跟踪

CvBlobTracker* cvCreateBlobTrackerCCMSPF();

连通区域跟踪 + 基于MeanShift 粒子滤波的碰撞分析

CvBlobTracker* cvCreateBlobTrackerMS();

Mean shift 算法

CvBlobTracker* cvCreateBlobTrackerMSFG();

基于前景的Mean shift 算法

CvBlobTracker* cvCreateBlobTrackerMSPF();

基于Mean shift 权重的粒子滤波

 

5 轨迹生成(CvBlobTrackGen)

       该接口为CvBlobTrackGen,用于目标跟踪结束后,轨迹数据的保存。子类包括CvBlobTrackGen1和CvBlobTrackGenYML,前者以目标轨迹为单位保存整个轨迹的(x,y,sx,sy)数据为文本格式,后者与视频数据同步,以帧为单位保存当前目标信息为YML格式。

用户调用接口:

CvBlobTrackGen* cvCreateModuleBlobTrackGen1();

CvBlobTrackGen* cvCreateModuleBlobTrackGenYML();

 

6 跟踪后处理(CvBlobTrackPostProc)

       跟踪后处理是一个可选模块,主要用于跟踪过程中目标轨迹的平滑,子类众多,这里给出三个主要的用户接口和说明。

用户调用接口:

CvBlobTrackPostProc* cvCreateModuleBlobTrackPostProcTimeAverRect()

轨迹矩形窗时间平均

CvBlobTrackPostProc* cvCreateModuleBlobTrackPostProcTimeAverExp()

轨迹指数窗时间平均

CvBlobTrackPostProc* cvCreateModuleBlobTrackPostProcKalman()

目标方位、尺寸的Kalman滤波平滑

 

7 轨迹分析(CvBlobTrackAnalysis)

       当某个目标跟踪结束后,会产生一个轨迹,CvBlobTrackAnalysis的子类用于对轨迹进行数据分析。子类众多,这里给出六个主要的用户接口和说明。

用户调用接口:

CvBlobTrackAnalysis* cvCreateModuleBlobTrackAnalysisHistPVS();

5维矢量直方图分析(x,y,vx,vy,state)

CvBlobTrackAnalysis* cvCreateModuleBlobTrackAnalysisHistP();

2维矢量直方图分析(x,y)

CvBlobTrackAnalysis*  cvCreateModuleBlobTrackAnalysisHistPV();

4维矢量直方图分析(x,y,vx,vy)

CvBlobTrackAnalysis* cvCreateModuleBlobTrackAnalysisHistSS();

起始点4维矢量直方图分析(startpos,endpos)

CvBlobTrackAnalysis* cvCreateModuleBlobTrackAnalysisTrackDist();

目标轨迹之间比较距离

CvBlobTrackAnalysis* cvCreateModuleBlobTrackAnalysisIOR();

整合上述多种分析方法

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/127678.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 理解HTTP和TCP

    理解HTTP和TCP TCP协议对应于传输层,而HTTP协议对应于应用层,从本质上来说,二者没有可比性。Http协议是建立在TCP协议基础之上的,当浏览器需要从服务器获取网页数据的时候,会发出一次Http请求。Http会通过TCP建立起一个到服务器的连接通道,当本次请求需要的数据完毕后,Http会立即将TCP连接断开,这个过程是很短的。所以Http连接是一种短连接,是一种无状态的连接。所谓的无状态,是指浏览器每次向服…

    2022年9月14日
    2
  • 项目管理办法_企业项目管理

    项目管理办法_企业项目管理本文档的目的是为公司各个项目的项目管理工作提供指导,帮助项目组其他成员了解项目管理的要素,明确项目管理活动中的角色职责、协作流程、作业表单格式要求。本文档将规定项目管理中各角色的职责和权利,在进行协作

    2022年8月2日
    5
  • meta property=og标签含义及作用

    meta property=og标签含义及作用

    2022年2月9日
    179
  • The Building Blocks- Components of EA Part 2- Process, People, Network and Time

    The Building Blocks- Components of EA Part 2- Process, People, Network and Time

    2021年12月2日
    41
  • Java核心技术(基础知识一)

    Java核心技术(基础知识一)Java程序设计概述1.1Java“白皮书”的关键术语简单性我们希望构建一个无须深奥的专业训练就可以进行编程的系统,并且要符合当今的标准惯例。因此,尽管我们发现C++不太适用,但在设计Java的时候韩式尽可能地接近C++,以便系统更易于理解。Java剔除了C++中许多很少使用、难以理解、容易混淆地特性。在我们看来,这些特性带来地麻烦远远多于它们地好处。的确,Java地语法是C++的一个“纯净”版本。这里没有头文件、指针运算(甚至指针语法)、结构、联合、操作符重载、虚基类等。然而,设计者并

    2022年7月9日
    21
  • GoLand激活码2021 4月【在线破解激活】

    GoLand激活码2021 4月【在线破解激活】,https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月15日
    47

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号