时间序列预测(四)—— LSTM模型「建议收藏」

时间序列预测(四)——LSTM模型文章链接(一)数据预处理(二)AR模型(自回归模型)(三)Xgboost模型(四)LSTM模型(五)Prophet模型(自回归模型)模型原理  LSTM(Long-shorttimememory,LSTM)模型,亦即是长段时间模型。LSTM的原理这篇博客讲的十分的清楚,建议英语好的小伙伴直接去看原文,我这里就大致的翻译精简一下。  人类天…

大家好,又见面了,我是你们的朋友全栈君。

时间序列预测(四)—— LSTM模型

欢迎大家来我的个人博客网站观看原文:https://xkw168.github.io/2019/05/20/时间序列预测-四-LSTM模型.html

文章链接

(一)数据预处理

(二)AR模型(自回归模型)

(三)Xgboost模型

(四)LSTM模型

(五)Prophet模型(自回归模型)


模型原理

  LSTM(Long-short time memory,LSTM)模型,亦即是长段时间模型。LSTM的原理这篇博客讲的十分的清楚,建议英语好的小伙伴直接去看原文,我这里就大致的翻译精简一下。
  人类天生具备的一个能力就是记忆的持久性,可以根据过往经验,从而推断出当前看到的内容的实际含义。如看电影的时候可以通过先前时间去推断后续事件;看一篇文章的时候,同样可以通过过往的知识积累去推断文章中每个词语的含义。而传统的神经网络并没有“持久性”,每一个神经元不能通过前面神经元的结果进行推断,为了解决这一问题科学家提出了递归神经网络(Recurrent Neural Networks,RNN)。RNN是包含循环的神经网络(如图所示),允许信息的持久化。其中A可以看作神经网络的一个缩影,接受某时刻的输入 X t X_t Xt然后输出对应的结果 h t h_t ht,一个回路可以允许信息从一步传递到另一步。
RNN示意图
  为了更直观的展示,将回路拆分开来,用一个连续的序列进行表示(如图所示)。一个循环神经网络可以看作是若干个相同的基本单元连接起来,每一个基本单元都可以将信息传递到下一个基本单元。
RNN分解示意图

  常规的RNN存在一个问题就是,无法解决“长期依赖”(long-term dependency)问题,即有用信息和预测点相隔较远。以词语预测为例,“我来自中国,我会讲中文”,这句话里面有用信息与预测点相隔较近,RNN可以很轻易的推断出下一个词语应该是中文,但假如有用信息与预测点相隔较远,如“我来自中国……我会讲中文”,此时RNN便无法推断出接下来的词语。换句话说,RNN的信息持久性不够高,不能保持几十甚至上百步。
  为了弥补传统RNN的这个缺点,人们引入了LSTM(long short-term memory)这个模型。LSTM可以看作是一种特殊的RNN,相较于传统RNN,LSTM天生就对长期依赖有着很好的支持。LSTM模型的核心思想主要有两个,分别为记忆元组(memory cell)和非线性的门单元(nonlinear gating unit),其中记忆元组用于保持系统的状态,非线性的门单元用于在每一个时间点调节流入和流出记忆元组的信息。每个递归的神经网络都可以分解成无数个基本重复单元,传统的RNN是这样,LSTM也是如此。在传统的RNN里面,基本重复单元内部结构十分简单,通常只有一个简单的神经网络层(通常为一个tanh模块,如图所示);在LSTM中,使用了四个神经网络层并且彼此之间以一种特殊的关系进行交互(如图所示)。

RNN基本单元
LSTM基本单元


模型安装

pip install tensorflow


模型实现

  这里同样使用的是TensorFlow里面的Timeseries模块实现。

def now():
    return datetime.now().strftime("%m_%d_%H_%M_%s")


def parse_result_tf(tf_data):
    """ parse the result of model output in tensorflow :param tf_data: the output of tensorflow :return: data in DataFrame format """
    return pd.DataFrame.from_dict({ 
   "ds": tf_data["times"].reshape(-1), "y": tf_data["mean"].reshape(-1)})


def generate_time_series(
        start_date=datetime(2006, 1, 1),
        cnt=4018, delta=timedelta(days=1), timestamp=False
):
    """ generate a time series/index :param start_date: start date :param cnt: date count. If =cnt are specified, delta must not be; one is required :param delta: time delta, default is one day. :param timestamp: output timestamp or format string :return: list of time string or timestamp """

    def per_delta():
        curr = start_date
        while curr < end_date:
            yield curr
            curr += delta

    end_date = start_date + delta * cnt

    time_series = []
    if timestamp:
        for t in per_delta():
            time_series.append(t.timestamp())
    else:
        for t in per_delta():
            time_series.append(t)
        # print(t.strftime("%Y-%m-%d"))
    return time_series


def LSTM_predict_tf(train_data, evaluation_data, forecast_cnt=365, freq="D", model_dir=""):
    """ predict time series with LSTM model in tensorflow :param train_data: data use to train the model :param evaluation_data: data use to evaluate the model :param forecast_cnt: how many point needed to be predicted :param freq: the interval between time index :param model_dir: directory of pre-trained model(checkpoint, params) :return: """
    model_directory = "./model/LSTM_%s" % now()
    params = { 
   
        "batch_size": 3,
        "window_size": 4,
        # The number of units in the model's LSTMCell.
        "num_units": 128,
        # The dimensionality of the time series (one for univariate, more than one for multivariate)
        "num_features": 1,
        # how many steps we train the model
        "global_steps": 3000
    }
    # if there is a pre-trained model, use parameters from it
    if model_dir:
        model_directory = model_dir
        params = read_model_param(model_dir + "/params.txt")

    # create time index for model training(use int)
    time_int = range(len(train_data) + len(evaluation_data))

    data_train = { 
   
        tf.contrib.timeseries.TrainEvalFeatures.TIMES: time_int[:len(train_data)],
        tf.contrib.timeseries.TrainEvalFeatures.VALUES: train_data["y"],
    }

    data_eval = { 
   
        tf.contrib.timeseries.TrainEvalFeatures.TIMES: time_int[len(train_data):],
        tf.contrib.timeseries.TrainEvalFeatures.VALUES: evaluation_data["y"],
    }

    reader_train = NumpyReader(data_train)
    reader_eval = NumpyReader(data_eval)

    """ define in tensorflow/contrib/timeseries/python/timeseries/input_pipeline.py """
    train_input_fn = tf.contrib.timeseries.RandomWindowInputFn(
        reader_train, batch_size=params["batch_size"], window_size=params["window_size"])

    """ define in tensorflow/contrib/timeseries/python/timeseries/estimators.py """
    estimator_lstm = ts_estimators.TimeSeriesRegressor(
        model=_LSTMModel(num_features=params["num_features"], num_units=params["num_units"]),
        optimizer=tf.train.AdamOptimizer(learning_rate=0.01),
        model_dir=model_directory
    )

    if not model_dir:
        """ website: https://www.tensorflow.org/api_docs/python/tf/estimator/Estimator#train """
        estimator_lstm.train(input_fn=train_input_fn, steps=params["global_steps"])

    evaluation_input_fn = tf.contrib.timeseries.WholeDatasetInputFn(reader_eval)
    evaluation = estimator_lstm.evaluate(input_fn=evaluation_input_fn, steps=1)
    # Predict starting after the evaluation
    (predictions,) = tuple(estimator_lstm.predict(
        input_fn=tf.contrib.timeseries.predict_continuation_input_fn(
            evaluation, steps=forecast_cnt)))

    save_model_param(model_directory, params)
    if "loss" in evaluation.keys():
        print("loss:%.5f" % evaluation["loss"])
        f = open(model_directory + "/%s" % evaluation["loss"], "w")
        f.close()
        model_log(
            evaluation["loss"],
            average_loss=-1 if "average_loss" not in evaluation.keys() else evaluation["average_loss"],
            content=model_dir
        )

    evaluation = parse_result_tf(evaluation)
    predictions = parse_result_tf(predictions)
    first_date = evaluation_data["ds"].tolist()[0]
    evaluation["ds"] = generate_time_series(first_date, cnt=len(evaluation), delta=delta_dict[freq])
    latest_date = evaluation_data["ds"].tolist()[-1]
    predictions["ds"] = generate_time_series(latest_date, cnt=len(predictions), delta=delta_dict[freq])

    return evaluation, predictions

关键参数

  • window_size:“观察窗”大小,用于控制将多少个连续的时间序列放在一起;
  • batch_size:批次大小,用于控制将多少个“观察窗”,该值越大,模型训练的时候梯度就会越稳定;
  • num_features:与AR模型一致,是时间序列的维度;
  • num_units:每个LSTM元组(cell)里面包含多少个基本单元(unit);
  • optimizer:优化器的种类;
  • learning_rate:学习速率,与模型训练时间成负相关,学习率越大训练时间越短,但是过大的学习率可能会导致模型无法收敛;
  • steps:模型的训练迭代次数。

注意由于LSTM模型较为复杂,故当数据量较少而规律不明显的情况下,其模型表现可能不尽人意。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/128267.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • webpack图片压缩_webpack的cdn

    webpack图片压缩_webpack的cdn图片处理url-loader(webpack5之前的处理方式)在项目开发中,我们时长会需要使用到图片,比如在img文件夹中有图片test1.png,然后在normal.css中会引用到图片body

    2022年7月30日
    3
  • 数据仓库之电商数仓– 3.1、电商数据仓库系统(ODS层、DIM层、DWD层)

    数据仓库之电商数仓– 3.1、电商数据仓库系统(ODS层、DIM层、DWD层)目录一、数仓分层1.1为什么要分层1.2数据集市与数据仓库概念1.3数仓命名规范1.3.1表命名1.3.2脚本命名1.3.3表字段类型二、数仓理论2.1范式理论2.1.1范式概念2.1.2函数依赖2.1.3三范式区分2.2关系建模与维度建模2.2.1关系建模2.2.2维度建模⭐️2.3维度表和事实表⭐️2.3.1维度表2.3.2事实表2.4维度模型分类2.5数据仓库建模⭐️????2.5.1ODS层2.5.2DIM层和DWD层2.5.3DWS层与DWT层2.5.4

    2022年6月26日
    26
  • 激活成功教程版游戏盒子下载_pixaloop激活成功教程版

    激活成功教程版游戏盒子下载_pixaloop激活成功教程版Typora收费了,个人理解想让我花小钱钱,不可能但是用习惯了,懒得换,怎么办用不收费的旧版就ok了正巧之前重装系统有下载的安装包,分享给大家了,需要的随意,安装包的时间是2021/11/22与2021/04/07两个版本的里面有一些其他软件,需要的自取https://yxmiaoyu.lanzouo.com/b01cyja5c密码:windows…

    2022年10月12日
    0
  • 人力外包 vs 软件外包

    人力外包 vs 软件外包A公司:大外包公司,人力外包,号称有7000多员工,外派某国内银行IT部门工作,开工资10KB公司:小外包公司(外企性质,需要英语能力),软件外包(类似竞标,把项目拿到本公司来做),200员工,发包方是国外大银行,开工资12K。PS:6年JAVA经验这个该选那个好?从职业生涯、稳定性等方面考虑!…

    2022年5月19日
    35
  • 数据库ER图基础概念知识

    数据库ER图基础概念知识ER图分为实体、属性、关系三个核心部分。实体是长方形体现,而属性则是椭圆形,关系为菱形。ER图的实体(entity)即数据模型中的数据对象,例如人、学生、音乐都可以作为一个数据对象,用长方体来表示,每个实体都有自己的实体成员(entitymember)或者说实体对象(entityinstance…

    2022年6月21日
    31
  • 吊炸天!74款APP完整源码!

    吊炸天!74款APP完整源码!吊炸天!74款APP完整源码!超级干货大集合!下面是所有APP的效果图展示,由于图片较多,加载较慢,为了方便阅读,您也可以点击阅读原文观看。WeChat高仿微信高仿微信,实现功能有:好友之间文字聊天,表情,视频通话,语音,语音电话,发送文件等。知乎专栏App第三方的app,引用作者的描述:“最近一直在利用空余时间开发一个完整的App,名字就叫“专栏”。开发这个App的…

    2022年4月26日
    39

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号