深度信念网络DBN的一个matlab实例「建议收藏」

关于深度学习的一些个人浅见:   深度学习通常是训练深度(多层)神经网络,用于模式识别(如语音、图像识别);深度网络指是具有深层(多层)网络结构的神经网络。   深层网络由于神经元多,参数多,拟合表现能力强,有表现欲解决复杂问题的能力。   但是深度网络存在很多局部最优解,深度网络的训练容易停留在局部最优上,初始参数的选择对网络最终收敛在那个位置有很大的影响。

大家好,又见面了,我是你们的朋友全栈君。

关于深度学习的一些个人浅见:

     深度学习通常是训练深度(多层)神经网络,用于模式识别(如语音、图像识别);深度网络 指是具有深层(多层)网络结构的神经网络。

     深层网络由于神经元多,参数多,拟合表现能力强,有表现欲解决复杂问题的能力。

     但是深度网络存在很多局部最优解,深度网络的训练容易停留在局部最优上,初始参数的选择对网络最终收敛在那个位置有很大的影响。

     采用限制玻尔兹曼机RBM对深度网络做逐层无监督训练,将各单层训练得到的参数作为深度网络各层神经元的初始参数,该参数是深度网络参数空间的一个较好位置(容易)。

     RBM逐层训练出深度网络参数初值后,在用传统的BP算法对深度网络进行训练,如此,深度网络的参数最终将收敛在一个好的位置。

     RBM通过迭代大量数据的无监督训练,把能够提炼出训练数据的较本质的特征,这被认为是好的初始参数。

本例子为matlab编写,为用数字识别训练一个手写数字识别的深度神经网络。

另外需要DBN的支持代码,可以从这里下载:http://download.csdn.net/detail/hzq20081121107/7857735,http://pan.baidu.com/s/1c0fBQsK

网络结构采用 784,400,200,100,50,20,10的网络结构。

function aGetDeepNet()
clc
clear all
%得到训练数据
load('adata.mat','train_digitdata','train_targets');
X = train_digitdata;
Y = train_targets;
%输入数据初始化
Xmin = min(X);
Xmax = max(X);
X = bsxfun(@rdivide,bsxfun(@minus,X,Xmin),(Xmax-Xmin));

%RBM训练得到第一隐层的网络参数,rbm输入为图片数据
rbm1 = rbm([784,400]);
rbm1 = checkrbmtrain(@rbmtrain1,rbm1,X,50,0.1);
net_rbm1 = rbm2nnet(rbm1,'up');
h1 = nnetfw(net_rbm1,X);

%RBM训练得到第二隐层的网络参数,输入为第一隐层的输出
rbm2 = rbm([400,200]);
rbm2 = checkrbmtrain(@rbmtrain1,rbm2,h1,50,0.1);
net_rbm2 = rbm2nnet(rbm2,'up');
h2 = nnetfw(net_rbm2,h1);

%RBM训练得到第三隐层的网络参数,输入为第二隐层的输出
rbm3 = rbm([200,100]);
rbm3 = checkrbmtrain(@rbmtrain1,rbm3,h2,50,0.1);
net_rbm3 = rbm2nnet(rbm3,'up');
h3 = nnetfw(net_rbm3,h2);

%RBM训练得到第四隐层的网络参数,输入为第三隐层的输出
rbm4 = rbm([100,50]);
rbm4 = checkrbmtrain(@rbmtrain1,rbm4,h3,50,0.1);
net_rbm4 = rbm2nnet(rbm4,'up');
h4 = nnetfw(net_rbm4,h3);

%RBM训练得到第五隐层的网络参数,输入为第四隐层的输出
rbm5 = rbm([50,20]);
rbm5 = checkrbmtrain(@rbmtrain1,rbm5,h4,50,0.1);
net_rbm5 = rbm2nnet(rbm5,'up');
h5 = nnetfw(net_rbm5,h4);

%构建深度网络,并初始化参数为rbm训练出的参数。
net1 = nnet([784,400,200,100,50,20,10],'softmax');
net1.w{1} = net_rbm1.w{1};
net1.w{2} = net_rbm2.w{1};
net1.w{3} = net_rbm3.w{1};
net1.w{4} = net_rbm4.w{1};
net1.w{5} = net_rbm5.w{1};

%对深度网络进行BP训练
net2 = nnettrain(net1,X,Y,1000);

%用训练好的深度网络net2分类识别
y = nnetfw(net2,X);

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/128693.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Jenkins(2)docker容器中安装python3「建议收藏」

    Jenkins(2)docker容器中安装python3「建议收藏」前言使用docker安装jenkins环境,jenkins构建的workspace目录默认是在容器里面构建的,如果我们想执行python3的代码,需进容器内部安装python3的环境。进jenki

    2022年7月30日
    4
  • Oracle 绑定变量_oracle变量不在选择列表中

    Oracle 绑定变量_oracle变量不在选择列表中begintest.test(a=>1,b=>:603);end;执行的时候报错:Ora-01008错误:Oracle?并非所有变量都已绑定原因是??b=>:603之前多了一个冒号导致他判断错误,解决方法是检查和删除不需要的冒号。…

    2022年9月7日
    0
  • 13项美德—富兰克林

    13项美德—富兰克林

    2021年4月24日
    146
  • idea2021激活码永久-激活码分享

    (idea2021激活码永久)2021最新分享一个能用的的激活码出来,希望能帮到需要激活的朋友。目前这个是能用的,但是用的人多了之后也会失效,会不定时更新的,大家持续关注此网站~https://javaforall.net/100143.htmlIntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,上面是详细链接哦~83…

    2022年3月27日
    9.3K
  • springboot后端_搭建javaweb开发环境

    springboot后端_搭建javaweb开发环境基于JAVAspringboot+VUE前后分类疫情防疫平台《精品毕设》源码+sql+论文:主要实现系统管理、疫情实时状态、每日健康打卡、复工申请、审核、历史出行数据、通知公告等具体功能设计

    2022年8月23日
    2
  • object.finalize_object的equals方法

    object.finalize_object的equals方法Object类九大方法之finalize方法finalize()是Object的protected方法,子类可以覆盖该方法以实现资源清理工作,GC在回收对象之前调用该方法。finalize的作用(1)finalize()与C++中的析构函数不是对应的。C++中的析构函数调用的时机是确定的(对象离开作用域或delete掉),但Java中的finalize的调用具有不确定性(2)不建议用fin…

    2022年9月19日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号