离散均匀分布的期望和方差(均值和方差的性质)

总结一下概统用到的各种分布,以及其期望和方差。

大家好,又见面了,我是你们的朋友全栈君。

预备定义

数学期望

定义

E [ g ( x ) ] = { ∑ i g ( x i ) p ( x i ) , 离散场合 ∫ − ∞ ∞ g ( x ) p ( x ) d x , 连续场合 E[g(x)]=\begin{cases}\sum\limits_ig(x_i)p(x_i),&\text{离散场合} \\ \\ \int_{-\infty}^\infty{g(x)p(x)\mathrm{d}x},&\text{连续场合}\end{cases} E[g(x)]=ig(xi)p(xi),g(x)p(x)dx,离散场合连续场合

性质

  1. 常数期望为其自身;
  2. E ( a X + b ) = a E ( X ) + b E(aX+b)=aE(X)+b E(aX+b)=aE(X)+b;
  3. 多维随机变量亦满足线性性质;
  4. 级数(积分)收敛,则期望存在;反之不存在,如Cauchy分布。

方差

定义

方差: D ( X ) = E [ X − E ( X ) ] 2 = E ( X 2 ) − [ E ( X ) ] 2 D(X)=E[X-E(X)]^2=E(X^2)-[E(X)]^2 D(X)=E[XE(X)]2=E(X2)[E(X)]2,

标准差: D X \sqrt{DX} DX
,

标准化的随机变量: X − E X D X \frac{X-EX}{\sqrt{DX}} DX
XEX
.

性质

  1. 常数方差为零;
  2. D ( a X + b ) = a 2 D ( X ) D(aX+b)=a^2D(X) D(aX+b)=a2D(X)
  3. 极值性质:若 c ≠ E ( X ) c\neq E(X) c=E(X), 则 D ( X ) = E [ X − E ( X ) 2 ] = E ( X − c ) 2 − ( c − E X ) 2 < E ( X − c ) 2 ; D(X)=E[X-E(X)^2]=E(X-c)^2-(c-EX)^2<E(X-c)^2; D(X)=E[XE(X)2]=E(Xc)2(cEX)2<E(Xc)2;
  4. 切比雪夫不等式(描述随机变量的变化情况): P { ∣ X − E X ∣ ⩾ ε } ⩽ D X ε 2 P\{|X-EX|\geqslant\varepsilon\}\leqslant\frac{DX}{\varepsilon^2} P{
    X
    EXε}ε2DX
    ,或表示为 P { ∣ X − E X ∣ < ε } ⩾ 1 − D X ε 2 P\{|X-EX|<\varepsilon\}\geqslant1-\frac{DX}{\varepsilon^2} P{
    X
    EX<ε}1ε2DX
    .

协方差&相关系数

协方差

  • c o v ( X ,   Y ) = E [ ( X − E X ) ( Y − E Y ) ] = E ( X Y ) − E X ⋅ E Y \mathrm{cov}(X, \ Y) = E[(X-EX)(Y-EY)]=E(XY)-EX\cdot EY cov(X, Y)=E[(XEX)(YEY)]=E(XY)EXEY.

  • D ( X + Y ) = D ( X ) + D ( Y ) + 2 c o v ( X ,   Y ) D(X+Y)=D(X)+D(Y)+2\mathrm{cov}(X,\ Y) D(X+Y)=D(X)+D(Y)+2cov(X, Y).

相关系数

  • r i j = c o v ( X ,   Y ) D X ⋅ D Y r_{ij}=\frac{\mathrm{cov}(X,\ Y)}{\sqrt{DX}\cdot \sqrt{DY}} rij=DX
    DY
    cov(X, Y)
    ,

  • 显然,相关系数也是标准化的两随机变量 X − E X D X \frac{X-EX}{\sqrt{DX}} DX
    XEX
    Y − E Y D Y \frac{Y-EY}{\sqrt{DY}} DY
    YEY
    的协方差;

  • 定义常数与任何随机变量的相关系数为 0 0 0.

性质
  1. ∣ r ∣ ⩽ 1 |r|\leqslant1 r1;
  2. r = 0 r=0 r=0,不相关;
  3. 以下四个条件等价:
  • c o v ( X ,   Y ) = 0 \mathrm{cov}(X,\ Y)=0 cov(X, Y)=0;
  • X X X Y Y Y不相关;
  • E ( X Y ) = E X ⋅ E Y E(XY)=EX\cdot EY E(XY)=EXEY;
  • D ( X + Y ) = D X + D Y D(X+Y)=DX+DY D(X+Y)=DX+DY.
  1. X X X Y Y Y独立,则 X X X Y Y Y不相关,反之不成立;
  2. 二元正态分布的不相关性与独立性等价。

离散分布期望、方差

分布名称 密度函数 p ( x ) p(x) p(x) 数学期望 E ( X ) E(X) E(X) 方差 D ( X ) D(X) D(X)
退化分布(单点分布) p c = 1 p_c=1 pc=1 c c c 0 0 0
伯努利分布(两点分布) p k = p k ( 1 − p ) 1 − k ,   k = 0 ,   1 p_k=p^{k}(1-p)^{1-k},\ k=0,\ 1 pk=pk(1p)1k, k=0, 1 p p p p ( 1 − p ) p(1-p) p(1p)
二项分布 b ( k ;   n ,   p ) = ( n k ) p k ( 1 − p ) n − k b(k;\ n,\ p)=\binom{n}{k}p^k(1-p)^{n-k} b(k; n, p)=(kn)pk(1p)nk n p np np n p ( 1 − p ) np(1-p) np(1p)
泊松分布 p ( k ;   λ ) = λ k k ! e − λ p(k;\ \lambda)=\frac{\lambda^k}{k!}\mathrm{e}^{-\lambda} p(k; λ)=k!λkeλ λ \lambda λ λ \lambda λ
几何分布 g ( k ;   p ) = ( 1 − p ) k − 1 p g(k;\ p)=(1-p)^{k-1}p g(k; p)=(1p)k1p 1 / p 1/p 1/p ( 1 − p ) / p 2 (1-p)/p^2 (1p)/p2
超几何分布 p k = ( M k ) ( N − M n − k ) ( N n ) p_k=\frac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}} pk=(nN)(kM)(nkNM) n M N \frac{nM}{N} NnM n M N ( 1 − M N ) ⋅ N − n N − 1 \frac{nM}{N}\left(1-\frac MN\right)\cdot \frac{N-n}{N-1} NnM(1NM)N1Nn
帕斯卡分布 p k = ( k − 1 r − 1 ) p r ( 1 − p ) k − r ,   k = r , r + 1 , ⋯ p_k=\binom{k-1}{r-1}p^r(1-p)^{k-r},\ k=r,r+1,\cdots pk=(r1k1)pr(1p)kr, k=r,r+1, r p \frac rp pr r ( 1 − p ) p 2 \frac{r(1-p)}{p^2} p2r(1p)
负二项分布 p k = ( − r k ) p r ( p − 1 ) k ,   k = 0 , 1 , 2 , ⋯ p_k=\binom{-r}{k}p^r(p-1)^k,\ k=0,1,2,\cdots pk=(kr)pr(p1)k, k=0,1,2, r ( 1 − p ) p \frac {r(1-p)}p pr(1p) r ( 1 − p ) p 2 \frac{r(1-p)}{p^2} p2r(1p)

连续分布期望、方差

分布名称 密度函数 p ( x ) p(x) p(x) 数学期望 E ( X ) E(X) E(X) 方差 D ( X ) D(X) D(X)
均匀分布 p ( x ) = { 1 b − a , a ⩽ x ⩽ b 0 , 其他 p(x)=\begin{cases}\dfrac1{b-a},&a\leqslant x \leqslant b\\0,&\text{其他}\end{cases} p(x)=ba1,0,axb其他 a + b 2 \frac{a+b}2 2a+b ( b − a ) 2 12 \frac{(b-a)^2}{12} 12(ba)2
正态分布(Gauss分布) p ( x ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 p(x)=\dfrac{1}{\sqrt{2\pi\sigma^2}}\mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}} p(x)=2πσ2
1
e2σ2(xμ)2
μ \mu μ σ 2 \sigma^2 σ2
指数分布 p ( x ) = { λ e − λ x , x ⩾ 0 0 , x < 0 p(x)=\begin{cases}\lambda\mathrm{e}^{-\lambda x},& x \geqslant 0\\0,&x<0\end{cases} p(x)={
λeλx,0,x0x<0
1 λ \frac1\lambda λ1 1 λ 2 \frac1{\lambda^2} λ21
伽玛分布( Γ \Gamma Γ分布) p ( x ) = { λ r Γ ( r ) x r − 1 e − λ x , x ⩾ 0 0 , x < 0 p(x)=\begin{cases}\dfrac{\lambda^r}{\Gamma{(r)}}x^{r-1}\mathrm{e}^{-\lambda x},& x \geqslant 0\\0,&x<0\end{cases} p(x)=Γ(r)λrxr1eλx,0,x0x<0 r λ \frac r\lambda λr r λ 2 \frac{r}{\lambda^2} λ2r
卡方分布( χ 2 \chi^2 χ2分布) p ( x ) = { 1 2 n / 2 Γ ( n 2 ) x n 2 − 1 e − x 2 , x ⩾ 0 0 , x < 0 p(x)=\begin{cases}\dfrac{1}{2^{n/2}\Gamma{(\frac n2)}}x^{\frac n2-1}\mathrm{e}^{-\frac x 2},& x \geqslant 0\\0,&x<0\end{cases} p(x)=2n/2Γ(2n)1x2n1e2x,0,x0x<0 n n n 2 n 2n 2n
柯西分布 p ( x ) = 1 π ⋅ λ λ 2 + ( x − μ ) 2 p(x)=\dfrac1\pi\cdot\dfrac{\lambda}{\lambda^2+(x-\mu)^2} p(x)=π1λ2+(xμ)2λ 不存在 不存在
t t t分布 p ( x ) = Γ ( n + 1 2 ) n π Γ ( n 2 ) ( 1 + x 2 n ) − n + 1 2 p(x)=\dfrac{\Gamma\left(\frac {n+1}2\right)}{\sqrt{n\pi}\Gamma\left(\frac n2\right)}\left(1+\dfrac{x^2}{n}\right)^{-\frac{n+1}{2}} p(x)=nπ
Γ(2n)
Γ(2n+1)
(1+nx2)2n+1
0   ( n > 1 ) 0\ (n>1) 0 (n>1) n n − 2   ( n > 2 ) \frac n{n-2}\ (n>2) n2n (n>2)
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/128769.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • ServletContextListener

    ServletContextListenerServletContextListener的用法这个J2EE小提示阐述了ServletContextListener的用法。这个事件类作为Web应用服务的一部分,处理Web应用的servlet上下文(context)的变化的通知。这可以解释为,好像有个人在服务器旁不断地通知我们服务器在发生什么事件。那当然需要监听者了。因此,在通知上下文(context)初始化和销毁的时候,Servl

    2022年6月14日
    32
  • laravel判断上传文件是否有效

    laravel判断上传文件是否有效

    2021年10月10日
    47
  • httprunner(3)用脚手架快速搭建项目[通俗易懂]

    httprunner(3)用脚手架快速搭建项目[通俗易懂]前言如何快速搭建一个httprunner项目呢?我们可以使用脚手架,脚手架就是自动地创建一些目录,形成一个项目的架构,不需要我们再手动的去创建查看创建新项目的命令先来查看一下帮助命令httpr

    2022年7月31日
    5
  • pycharm安装tensorflow2.0 过程

    pycharm安装tensorflow2.0 过程pycharm安装tf2.0步骤1.安装python3.7.9官网下载,记住安装python.exe的路径官网地址2.配置环境,设置成上一步安装好的.exe文件3.安装tf相关包,点击添加pandsnumpymatplotlibscikit-learntensorflow2.04.测试安装成功,输入代码importtensorflowastfsess=tf.Session()a=tf.constant(1)b=tf.constant(2)p

    2025年6月26日
    4
  • 宠物社区小程序_宠物论坛哪个好

    宠物社区小程序_宠物论坛哪个好微信小程序宠物论坛6个人主页页面JS部分constdb=wx.cloud.database()Page({data:{openid:””,nickname:””,heads:””},onLoad:function(options){constopenid=options.idthis.setData({openid:openid})console.log(this.data.openid)d

    2022年10月7日
    3
  • qt中connect函数信号写法_qt中connect函数用法

    qt中connect函数信号写法_qt中connect函数用法*.cpp//带参数的拉姆达表达式connect(this,&Widget::mySignal,[=](intcount){qDebug()<<count;});mySignal(123456);*.hsignals:voidmySignal(intcount);注意:要在pro文件中加上CONFIG+=C++11…

    2025年11月28日
    12

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号