keras自带数据集(横线生成器)

原文地址:AdetailedexampleofhowtousedatageneratorswithKeras引言在使用kears训练model的时候,一般会将所有的训练数据加载到内存中,然后喂给网络,但当内存有限,且数据量过大时,此方法则不再可用。此博客,将介绍如何在多核(多线程)上实时的生成数据,并立即的送入到模型当中训练。工具为keras。Tu…

大家好,又见面了,我是你们的朋友全栈君。

原文地址: A detailed example of how to use data generators with Keras

引言

在使用kears训练model的时候,一般会将所有的训练数据加载到内存中,然后喂给网络,但当内存有限,且数据量过大时,此方法则不再可用。此博客,将介绍如何在多核(多线程)上实时的生成数据,并立即的送入到模型当中训练。
工具为keras。

Tutorial

先看一下还未改进的版本:

import numpy as np
from keras.models import Sequential
#载入全部的数据!!
X, y = np.load('some_training_set_with_labels.npy')
#设计模型
model = Sequential()
[...] #网络结构
model.compile()
# 在数据集上进行模型训练
model.fit(x=X, y=y)

下面的结构将改变一次性载入全部数据的情况。接下来将介绍如何一步一步的构造数据生成器,此数据生成器也可应用在你自己的项目当中;复制下来,并根据自己的需求填充空白处。

定义

在构建之前先定义统一几个变量,并介绍几个小tips,对我们处理大的数据量很重要。
ID type为string,代表数据集中的某个样本。
调整以下结构,编译处理样本和他们的label:

1.新建一个词典名叫 partition

  • partition[‘train’] 为训练集的ID,type为list
  • partition[‘validation’] 为验证集的ID,type为list

2.新建一个词典名叫 * labels * ,根据ID可找到数据集中的样本,同样可通过labels[ID]找到样本标签。
举个例子:
假设训练集包含三个样本,ID分别为id-1,id-2和id-3,相应的label分别为0,1,2。验证集包含样本ID id-4,标签为 1。此时两个词典partitionlabels分别如下:

>>> partition
{
  
  'train': ['id-1', 'id-2', 'id-3'], 'validation': ['id-4']}
>>> labels
{
  
  'id-1': 0, 'id-2': 1, 'id-3': 2, 'id-4': 1}

为了模块化,将keras的代码与设计的类class分别放在两个不同的文件中,文件结构如下:

folder/
├── my_classes.py
├── keras_script.py
└── data/

data/ 中为数据集文件。

数据生成器(data generator)

接下来将介绍如何构建数据生成器 DataGenerator ,DataGenerator将实时的对训练模型feed数据。
接下来,将先初始化类。我们使此类继承自keras.utils.Sequence,这样我们可以使用多线程。

def __init__(self, list_IDs, labels, batch_size=32, dim=(32,32,32), n_channels=1, n_classes=10, shuffle=True):
    'Initialization'
    self.dim = dim
    self.batch_size = batch_size
    self.labels = labels
    self.list_IDs = list_IDs
    self.n_channels = n_channels
    self.n_classes = n_classes
    self.shuffle = shuffle
    self.on_epoch_end()

我们给了一些与数据相关的参数 dim,channels,classes,batch size ;方法 on_epoch_end 在一个epoch开始时或者结束时触发,shuffle决定是否在数据生成时要对数据进行打乱。

def on_epoch_end(self):
  'Updates indexes after each epoch'
  self.indexes = np.arange(len(self.list_IDs))
  if self.shuffle == True:
      np.random.shuffle(self.indexes)

另一个数据生成核心的方法__data_generation 是生成批数据。

def __data_generation(self, list_IDs_temp):
  'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
  # Initialization
  X = np.empty((self.batch_size, *self.dim, self.n_channels))
  y = np.empty((self.batch_size), dtype=int)

  # Generate data
  for i, ID in enumerate(list_IDs_temp):
      # Store sample
      X[i,] = np.load('data/' + ID + '.npy')

      # Store class
      y[i] = self.labels[ID]

  return X, keras.utils.to_categorical(y, num_classes=self.n_classes)

在数据生成期间,代码读取包含各个样本ID的代码ID.py.因为我们的代码是可以应用多线程的,所以可以采用更为复杂的操作,不用担心数据生成成为总体效率的瓶颈。
另外,我们使用Keras的方法keras.utils.to_categorical对label进行2值化
(比如,对6分类而言,第三个label则相应的变成 to [0 0 1 0 0 0]) 。
现在我们将要把这些部分进行组合,每一个请求需要一个batch的index,从0到所有的batch。此处定义在_len_ 中。
TODO

def __len__(self):
  'Denotes the number of batches per epoch'
  return int(np.floor(len(self.list_IDs) / self.batch_size))

现在,当相应的index的batch被选到,则生成器执行_getitem_方法来生成它。

def __getitem__(self, index):
  'Generate one batch of data'
  # Generate indexes of the batch
  indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]

  # Find list of IDs
  list_IDs_temp = [self.list_IDs[k] for k in indexes]

  # Generate data
  X, y = self.__data_generation(list_IDs_temp)

  return X, y

完整的代码

import numpy as np
import keras

class DataGenerator(keras.utils.Sequence):
    'Generates data for Keras'
    def __init__(self, list_IDs, labels, batch_size=32, dim=(32,32,32), n_channels=1, n_classes=10, shuffle=True):
        'Initialization'
        self.dim = dim
        self.batch_size = batch_size
        self.labels = labels
        self.list_IDs = list_IDs
        self.n_channels = n_channels
        self.n_classes = n_classes
        self.shuffle = shuffle
        self.on_epoch_end()

    def __len__(self):
        'Denotes the number of batches per epoch'
        return int(np.floor(len(self.list_IDs) / self.batch_size))

    def __getitem__(self, index):
        'Generate one batch of data'
        # Generate indexes of the batch
        indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]

        # Find list of IDs
        list_IDs_temp = [self.list_IDs[k] for k in indexes]

        # Generate data
        X, y = self.__data_generation(list_IDs_temp)

        return X, y

    def on_epoch_end(self):
        'Updates indexes after each epoch'
        self.indexes = np.arange(len(self.list_IDs))
        if self.shuffle == True:
            np.random.shuffle(self.indexes)

    def __data_generation(self, list_IDs_temp):
        'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
        # Initialization
        X = np.empty((self.batch_size, *self.dim, self.n_channels))
        y = np.empty((self.batch_size), dtype=int)

        # Generate data
        for i, ID in enumerate(list_IDs_temp):
            # Store sample
            X[i,] = np.load('data/' + ID + '.npy')

            # Store class
            y[i] = self.labels[ID]

        return X, keras.utils.to_categorical(y, num_classes=self.n_classes)

keras脚本

import numpy as np

from keras.models import Sequential
from my_classes import DataGenerator

# Parameters
params = {
  
  'dim': (32,32,32),
          'batch_size': 64,
          'n_classes': 6,
          'n_channels': 1,
          'shuffle': True}

# Datasets
partition = # IDs
labels = # Labels

# Generators
training_generator = DataGenerator(partition['train'], labels, **params)
validation_generator = DataGenerator(partition['validation'], labels, **params)

# Design model
model = Sequential()
[...] # Architecture
model.compile()

# Train model on dataset
model.fit_generator(generator=training_generator,
                    validation_data=validation_generator,
                    use_multiprocessing=True,
                    n_workers=6)

n_workers设置线程数。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/128930.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 机器学习 — 多项式回归

    机器学习 — 多项式回归前言在面对一些简单的线性问题时。线性回归能够用一个直线较为精确地描述数据之间的关系。但对于复杂的非线性数据问题时。线性回归的效果就大大不如意了。对特征数据进行多项式变化,再使用线性回归的做法就能提高模型的拟合效果,这种方法就是多项式回归。从面对上图1中的数据,线性回归不能准确描述数据关系。无论一次方、二次方、三次方、四次方都不能单独完美拟合数据。在多项式中集成了一次方、二次方、三次方、四次方…

    2025年6月17日
    3
  • 目前还存活的多个电驴下载站点[通俗易懂]

    目前还存活的多个电驴下载站点[通俗易懂]0、http://www.emule-project.net/这个不用说了,emule官方,没有它就没有下面的所有一切,德国人开的。只提供官方版emule软件,没有资源下载。秉承理念“eMule是完全免费的,它也决不包含广告软件、间谍和流氓软件。我们之所以创造eMule是为了快乐和知识,而不是为了金钱。”eMule的作者是一个德国人Merkur,本名Hendrik.Breitk

    2022年7月15日
    43
  • Python爬虫系列:爬取小说并写入txt文件

    Python爬虫系列:爬取小说并写入txt文件Python爬虫系列——爬取小说并写入txt文件文章介绍了如何从网站中爬取小说并写入txt文件中,实现了单章节写取,整本写取,多线程多本写取。爬虫使用的python版本为python3,有些系统使用python指令运行本脚本,可能出现错误,此时可以试一试使用python3运行本脚本。本文是一个教程,一步步介绍了如何爬取批量小说内容以及存储这是txt文件中,以下是项目源码地址。

    2022年5月29日
    72
  • 表格图片加载不出来,破图,加载失败怎么办_ie网页表格显示不出来

    表格图片加载不出来,破图,加载失败怎么办_ie网页表格显示不出来表格图片加载不出来,破图,加载失败el-upload组件将图片上传至服务器<templateslot-scope=”scope”slot=”wjmcForm”><el-upload:headers=”headers”:show-file-list=”false”…

    2025年8月6日
    2
  • javaquartz定时任务设置时间,赶紧收藏起来![通俗易懂]

    javaquartz定时任务设置时间,赶紧收藏起来![通俗易懂]Mybatis入门1、什么是Mybatis?MyBatis本是apache的一个开源项目iBatis,2010年这个项目由apachesoftwarefoundation迁移到了googlecode,并且改名为MyBatis。2013年11月迁移到Github。MyBatis是一款优秀的持久层框架,它支持定制化SQL、存储过程以及高级映射。MyBatis避免了几乎所有的JDBC代码和手动设置参数以及获取结果集。MyBatis可以使用简单的XML或注解来配置和映射原生信息,

    2022年7月13日
    44
  • PHP中跨站脚本的过滤RemoveXss函数

    PHP中跨站脚本的过滤RemoveXss函数

    2021年8月29日
    155

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号