keras自带数据集(横线生成器)

原文地址:AdetailedexampleofhowtousedatageneratorswithKeras引言在使用kears训练model的时候,一般会将所有的训练数据加载到内存中,然后喂给网络,但当内存有限,且数据量过大时,此方法则不再可用。此博客,将介绍如何在多核(多线程)上实时的生成数据,并立即的送入到模型当中训练。工具为keras。Tu…

大家好,又见面了,我是你们的朋友全栈君。

原文地址: A detailed example of how to use data generators with Keras

引言

在使用kears训练model的时候,一般会将所有的训练数据加载到内存中,然后喂给网络,但当内存有限,且数据量过大时,此方法则不再可用。此博客,将介绍如何在多核(多线程)上实时的生成数据,并立即的送入到模型当中训练。
工具为keras。

Tutorial

先看一下还未改进的版本:

import numpy as np
from keras.models import Sequential
#载入全部的数据!!
X, y = np.load('some_training_set_with_labels.npy')
#设计模型
model = Sequential()
[...] #网络结构
model.compile()
# 在数据集上进行模型训练
model.fit(x=X, y=y)

下面的结构将改变一次性载入全部数据的情况。接下来将介绍如何一步一步的构造数据生成器,此数据生成器也可应用在你自己的项目当中;复制下来,并根据自己的需求填充空白处。

定义

在构建之前先定义统一几个变量,并介绍几个小tips,对我们处理大的数据量很重要。
ID type为string,代表数据集中的某个样本。
调整以下结构,编译处理样本和他们的label:

1.新建一个词典名叫 partition

  • partition[‘train’] 为训练集的ID,type为list
  • partition[‘validation’] 为验证集的ID,type为list

2.新建一个词典名叫 * labels * ,根据ID可找到数据集中的样本,同样可通过labels[ID]找到样本标签。
举个例子:
假设训练集包含三个样本,ID分别为id-1,id-2和id-3,相应的label分别为0,1,2。验证集包含样本ID id-4,标签为 1。此时两个词典partitionlabels分别如下:

>>> partition
{
  
  'train': ['id-1', 'id-2', 'id-3'], 'validation': ['id-4']}
>>> labels
{
  
  'id-1': 0, 'id-2': 1, 'id-3': 2, 'id-4': 1}

为了模块化,将keras的代码与设计的类class分别放在两个不同的文件中,文件结构如下:

folder/
├── my_classes.py
├── keras_script.py
└── data/

data/ 中为数据集文件。

数据生成器(data generator)

接下来将介绍如何构建数据生成器 DataGenerator ,DataGenerator将实时的对训练模型feed数据。
接下来,将先初始化类。我们使此类继承自keras.utils.Sequence,这样我们可以使用多线程。

def __init__(self, list_IDs, labels, batch_size=32, dim=(32,32,32), n_channels=1, n_classes=10, shuffle=True):
    'Initialization'
    self.dim = dim
    self.batch_size = batch_size
    self.labels = labels
    self.list_IDs = list_IDs
    self.n_channels = n_channels
    self.n_classes = n_classes
    self.shuffle = shuffle
    self.on_epoch_end()

我们给了一些与数据相关的参数 dim,channels,classes,batch size ;方法 on_epoch_end 在一个epoch开始时或者结束时触发,shuffle决定是否在数据生成时要对数据进行打乱。

def on_epoch_end(self):
  'Updates indexes after each epoch'
  self.indexes = np.arange(len(self.list_IDs))
  if self.shuffle == True:
      np.random.shuffle(self.indexes)

另一个数据生成核心的方法__data_generation 是生成批数据。

def __data_generation(self, list_IDs_temp):
  'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
  # Initialization
  X = np.empty((self.batch_size, *self.dim, self.n_channels))
  y = np.empty((self.batch_size), dtype=int)

  # Generate data
  for i, ID in enumerate(list_IDs_temp):
      # Store sample
      X[i,] = np.load('data/' + ID + '.npy')

      # Store class
      y[i] = self.labels[ID]

  return X, keras.utils.to_categorical(y, num_classes=self.n_classes)

在数据生成期间,代码读取包含各个样本ID的代码ID.py.因为我们的代码是可以应用多线程的,所以可以采用更为复杂的操作,不用担心数据生成成为总体效率的瓶颈。
另外,我们使用Keras的方法keras.utils.to_categorical对label进行2值化
(比如,对6分类而言,第三个label则相应的变成 to [0 0 1 0 0 0]) 。
现在我们将要把这些部分进行组合,每一个请求需要一个batch的index,从0到所有的batch。此处定义在_len_ 中。
TODO

def __len__(self):
  'Denotes the number of batches per epoch'
  return int(np.floor(len(self.list_IDs) / self.batch_size))

现在,当相应的index的batch被选到,则生成器执行_getitem_方法来生成它。

def __getitem__(self, index):
  'Generate one batch of data'
  # Generate indexes of the batch
  indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]

  # Find list of IDs
  list_IDs_temp = [self.list_IDs[k] for k in indexes]

  # Generate data
  X, y = self.__data_generation(list_IDs_temp)

  return X, y

完整的代码

import numpy as np
import keras

class DataGenerator(keras.utils.Sequence):
    'Generates data for Keras'
    def __init__(self, list_IDs, labels, batch_size=32, dim=(32,32,32), n_channels=1, n_classes=10, shuffle=True):
        'Initialization'
        self.dim = dim
        self.batch_size = batch_size
        self.labels = labels
        self.list_IDs = list_IDs
        self.n_channels = n_channels
        self.n_classes = n_classes
        self.shuffle = shuffle
        self.on_epoch_end()

    def __len__(self):
        'Denotes the number of batches per epoch'
        return int(np.floor(len(self.list_IDs) / self.batch_size))

    def __getitem__(self, index):
        'Generate one batch of data'
        # Generate indexes of the batch
        indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]

        # Find list of IDs
        list_IDs_temp = [self.list_IDs[k] for k in indexes]

        # Generate data
        X, y = self.__data_generation(list_IDs_temp)

        return X, y

    def on_epoch_end(self):
        'Updates indexes after each epoch'
        self.indexes = np.arange(len(self.list_IDs))
        if self.shuffle == True:
            np.random.shuffle(self.indexes)

    def __data_generation(self, list_IDs_temp):
        'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
        # Initialization
        X = np.empty((self.batch_size, *self.dim, self.n_channels))
        y = np.empty((self.batch_size), dtype=int)

        # Generate data
        for i, ID in enumerate(list_IDs_temp):
            # Store sample
            X[i,] = np.load('data/' + ID + '.npy')

            # Store class
            y[i] = self.labels[ID]

        return X, keras.utils.to_categorical(y, num_classes=self.n_classes)

keras脚本

import numpy as np

from keras.models import Sequential
from my_classes import DataGenerator

# Parameters
params = {
  
  'dim': (32,32,32),
          'batch_size': 64,
          'n_classes': 6,
          'n_channels': 1,
          'shuffle': True}

# Datasets
partition = # IDs
labels = # Labels

# Generators
training_generator = DataGenerator(partition['train'], labels, **params)
validation_generator = DataGenerator(partition['validation'], labels, **params)

# Design model
model = Sequential()
[...] # Architecture
model.compile()

# Train model on dataset
model.fit_generator(generator=training_generator,
                    validation_data=validation_generator,
                    use_multiprocessing=True,
                    n_workers=6)

n_workers设置线程数。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/128930.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 善待自己 改变命运的N个人生哲理[通俗易懂]

    善待自己 改变命运的N个人生哲理[通俗易懂]善待自己改变命运的N个人生哲理

    2022年5月27日
    29
  • 电商用户行为数据分析系统的设计与实现_基于大数据的用户行为分析

    电商用户行为数据分析系统的设计与实现_基于大数据的用户行为分析前言本文针对淘宝app的运营数据,以行业常见指标对用户行为进行分析,包括一、提出问题1.电商常用分析体系2.电商常用分析指标3.本次分析的业务问题以及分析逻辑本次想通过对淘宝用户行为数据的分析,解决以下业务问题:以下为分析逻辑和用到适用的业务指标:…

    2022年9月27日
    1
  • 字典树的数据结构_数据结构快速排序

    字典树的数据结构_数据结构快速排序本文主要包括以下内容:Trie字典树的基本概念Trie字典树的基本操作插入查找前缀查询删除基于链表的Trie字典树Set性能对比LeetCode相关线段树的问题LeetCode第208号问题LeetCode第211号问题LeetCode第677号问题Trie字典树的基本概念上一篇我们介绍了线段树(SegmentTree),本文主要介绍Trie字典树…

    2022年9月6日
    0
  • 什么是pisa测试_PISA测试是什么?[通俗易懂]

    什么是pisa测试_PISA测试是什么?[通俗易懂]“国际高中指南”,给你国际学校选择一站式教育服务,最新国际学校资讯,最全面国际高中课程详情,都能通过“国际高中指南”为你解决,帮助你第一时间获取国际学校动态。为什么你会为孩子选择国际学校?因为这里的教育模式、课程体系能够帮助孩子更早的确立自己的兴趣爱好甚至未来的发展目标,能够帮助孩子全方位提升阅读能力、逻辑思维、数理分析能力等等。那这些能力可以通过什么方式去衡量呢?PISA测试。【PISA】什么是…

    2022年6月6日
    54
  • c语言全局变量和局部变量问题汇总

    c语言全局变量和局部变量问题汇总

    2021年11月24日
    38
  • executescalar mysql_ExecuteScalar

    executescalar mysql_ExecuteScalar这两个答案和一点点思考使我想到了一个接近答案的东西。首先再澄清一下:该应用程序是用C#(2.0+)编写的,并使用ADO.NET与SQLServer2005进行通信。镜像设置是托管主体和镜像的两个W2k3服务器以及托管作为监视器的快速实例的第三个服务器。这样做的好处是,故障转移对于使用数据库的应用程序几乎是透明的,它将对某些连接引发错误,但从根本上讲一切都会很好地进行。是的,我们得到了奇怪的误报…

    2022年6月30日
    21

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号