Highways「建议收藏」

Highways「建议收藏」HighwaysTimeLimit:1000MS MemoryLimit:10000KTotalSubmissions:14613 Accepted:4211 SpecialJudgeDescriptionTheislandnationofFlatopiaisperfectlyflat.

大家好,又见面了,我是你们的朋友全栈君。

Highways
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 14613   Accepted: 4211   Special Judge

Description

The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor system of public highways. The Flatopian government is aware of this problem and has already constructed a number of highways connecting some of the most important towns. However, there are still some towns that you can’t reach via a highway. It is necessary to build more highways so that it will be possible to drive between any pair of towns without leaving the highway system.

Flatopian towns are numbered from 1 to N and town i has a position given by the Cartesian coordinates (xi, yi). Each highway connects exaclty two towns. All highways (both the original ones and the ones that are to be built) follow straight lines, and thus their length is equal to Cartesian distance between towns. All highways can be used in both directions. Highways can freely cross each other, but a driver can only switch between highways at a town that is located at the end of both highways.

The Flatopian government wants to minimize the cost of building new highways. However, they want to guarantee that every town is highway-reachable from every other town. Since Flatopia is so flat, the cost of a highway is always proportional to its length. Thus, the least expensive highway system will be the one that minimizes the total highways length.

Input

The input consists of two parts. The first part describes all towns in the country, and the second part describes all of the highways that have already been built.

The first line of the input file contains a single integer N (1 <= N <= 750), representing the number of towns. The next N lines each contain two integers, xi and yi separated by a space. These values give the coordinates of i
th town (for i from 1 to N). Coordinates will have an absolute value no greater than 10000. Every town has a unique location.

The next line contains a single integer M (0 <= M <= 1000), representing the number of existing highways. The next M lines each contain a pair of integers separated by a space. These two integers give a pair of town numbers which are already connected by a highway. Each pair of towns is connected by at most one highway.

Output

Write to the output a single line for each new highway that should be built in order to connect all towns with minimal possible total length of new highways. Each highway should be presented by printing town numbers that this highway connects, separated by a space.

If no new highways need to be built (all towns are already connected), then the output file should be created but it should be empty.

Sample Input

9
1 5
0 0 
3 2
4 5
5 1
0 4
5 2
1 2
5 3
3
1 3
9 7
1 2

Sample Output

1 6
3 7
4 9
5 7
8 3

code:

prim算法

#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<sstream>
#include<algorithm>
#include<math.h>
#include<queue>
#include<stack>
#include<map>
#include<set>
using namespace std;
const int maxn=755;
const int INF=1000000;
double graph[maxn][maxn];
double lowcost[maxn];/*lowcost表示每个点的最小花费;*/
int closet[maxn];/*closet表示最小花费对应相连的点*/
int visited[maxn];/*visited区分两个集合*/
int n;/*n个点*/

struct dot{
    double x,y;
}a[maxn];

double f(dot p,dot q){
    return sqrt((p.x-q.x)*(p.x-q.x)+(p.y-q.y)*(p.y-q.y));
}

void createGraph(){
    memset(graph,0,sizeof(graph));
    memset(lowcost,0,sizeof(lowcost));
    memset(closet,0,sizeof(closet));
    memset(visited,0,sizeof(visited));
    for(int i=0;i<n;i++)
    for(int j=0;j<n;j++){
        if(i==j) graph[i][j]=INF;
        else graph[i][j]=graph[j][i]=f(a[i],a[j]);
    }
}

void prim(){
    visited[0]=1;/*选中第一个点*/
    for(int i=0;i<n;i++){
        lowcost[i]=graph[i][0];/*每个点与第一个点的权值*/
        closet[i]=0;/*与i点相连的是第一个点*/
    }
    for(int i=1;i<n;i++){  /*剩下n-1个点*/
        int k=0;
        double minn=lowcost[0];
        for(int j=0;j<n;j++){
            if(!visited[j] && lowcost[j]<minn){
                minn=lowcost[j];
                k=j;
            }
        }
        if(graph[k][closet[k]]!=0) printf("%d %d\n",k+1,closet[k]+1);
        visited[k]=1;
        for(int t=0;t<n;t++){  /*松弛操作*/
            if(!visited[t] && lowcost[t]>graph[t][k]){
                lowcost[t]=graph[t][k];
                closet[t]=k;
            }
        }
    }
}

int main()
{
 //   freopen("input.txt","r",stdin);
    int m;
    scanf("%d",&n);
    for(int i=0;i<n;i++){
        scanf("%lf%lf",&a[i].x,&a[i].y);
    }
    createGraph();
    scanf("%d",&m);
    int b,c;
    while(m--){
        scanf("%d%d",&b,&c);
        graph[b-1][c-1]=graph[c-1][b-1]=0;
    }
    prim();
}

Kruskal算法:注意要用G++提交

#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<sstream>
#include<algorithm>
#include<math.h>
#include<queue>
#include<stack>
#include<map>
#include<set>
using namespace std;
const int MAXN = 755; /*结点数目上限*/
int pa[MAXN];    /*pa[x]表示x的父节点*/
int rank[MAXN];    /*rank[x]是x的高度的一个上界*/
int flag;
struct node{
    int x,y;
    double w;
}edge[MAXN*MAXN];

struct dot{
    double x,y;
}a[MAXN];

bool cmp(node p,node q){
    return p.w<q.w;
}

double f(dot p,dot q){
    return sqrt((p.x-q.x)*(p.x-q.x)+(p.y-q.y)*(p.y-q.y));
}

/*创建一个单元集*/
void make_set(int x)
{
    pa[x] = x;
    rank[x] = 0;
}

/*带路径压缩的查找*/
int find_set(int x)
{
    if(x != pa[x])
        pa[x] = find_set(pa[x]);
    return pa[x];
}

/*按秩合并x,y所在的集合*/
void union_set(int xx, int yy,double w)
{
    int x = find_set(xx);
    int y = find_set(yy);
    if(x == y)return ;
    if(rank[x] > rank[y])/*让rank比较高的作为父结点*/
    {
        pa[y] = x;
    }
    else
    {
        pa[x] = y;
        if(rank[x] == rank[y])
            rank[y]++;
    }
    if(w!=0){
        printf("%d %d\n",xx,yy);
        flag=1;
    }
}

int main()
{
   // freopen("input.txt","r",stdin);
    int n,m;
    scanf("%d",&n);
    for(int i=0;i<MAXN;i++)
        make_set(i);
    for(int i=1;i<=n;i++){
        scanf("%lf%lf",&a[i].x,&a[i].y);
    }
    int k=0;
    for(int i=1;i<=n;i++){
        for(int j=i+1;j<=n;j++){
            edge[k].x=i;
            edge[k].y=j;
            edge[k].w=f(a[i],a[j]);
            k++;
        }
    }
    scanf("%d",&m);
    int b,c;
    while(m--){
        scanf("%d%d",&b,&c);
        union_set(b,c,0);
    }
    sort(edge,edge+k,cmp);
    flag=0;
    for(int i=0;i<k;i++){
        union_set(edge[i].x,edge[i].y,edge[i].w);
    }
    if(!flag) printf("\n");
}

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/129970.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • pHP生成唯一单号

    pHP生成唯一单号

    2021年11月8日
    43
  • Web安全 信息收集 (收集 Web服务器 的重要信息.)

    Web安全 信息收集 (收集 Web服务器 的重要信息.)?“信息收集”会对渗透测试工程师和网络安全工程师具有重大作用:可以帮助工程师们知道主机的存活的主机,主机的系统辨识,服务枚举等。这样工程师就可以执行下一次的工作,比如:对服务器系统进行渗透测试,然后再做出一定的防御。???收集的信息有:目标的真实IP地址,服务器的敏感目录,网站的搭建环境,网站使用的系统,网站防火墙,常用端口信息,目录网站是用什么脚本写得等信息.

    2022年6月29日
    25
  • ideamaven仓库设置_搭建maven仓库

    ideamaven仓库设置_搭建maven仓库1、Maven下载在maven官网下载maven安装:http://maven.apache.org/download.cgi下载之后解压到安装路径:完成安装。2、Maven本地仓库配置在本地新建本地仓库文件夹,替代默认新建在系统盘的仓库地址,因为随着时间,仓库会越来越大,所以建议自己新建一个本地仓库:Maven远程库也是位于网络上的存储库。因为maven在获取需要的jar包时会首先从本地仓库获取,当本地仓库不存在需要的jar包时会从setting.xml的…

    2022年9月23日
    0
  • 基于mysql的简单图书管理系统_图书管理系统

    基于mysql的简单图书管理系统_图书管理系统因为这两天要做数据库课设但是本人又很菜就做了一个简单的系统,简单的实现了增删改查,数据库用的是mysql,但是数据库的权限功能都没有实现,就是程序比较简陋,新手程序员可以参考一下~题目内容图书管理系统设计说明(1) 开发内容做出图书管理系统的需求分析,概念结构分析,逻辑结构分析,数据库的实施及维护。开发要求○1进行新书入库、现有图书信息修改以及删除;②能够实现对读者基本信息的查询和编辑管理;③能够实现预约功能;④能够实现借阅信息的查询功能;(2) 开发环境及工具系统前台开发软

    2022年10月15日
    0
  • 球谐函数

    球谐函数

    2021年5月25日
    195
  • chmod命令用法举例「建议收藏」

    chmod命令用法举例「建议收藏」chmod命令用于改变linux系统文件或目录的访问权限。该命令有两种用法。一种是包含字母和操作符表达式的文字设定法;另一种是包含数字的数字设定法。利用chown命令来更改某个文件或目录的所有者。利用chgrp命令来更改某个文件或目录的用户组。 chmod命令详细情况如下:1.命令格式:chmod[-cfvR][–help][–version]modefile  …

    2022年6月28日
    38

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号