Highways「建议收藏」

Highways「建议收藏」HighwaysTimeLimit:1000MS MemoryLimit:10000KTotalSubmissions:14613 Accepted:4211 SpecialJudgeDescriptionTheislandnationofFlatopiaisperfectlyflat.

大家好,又见面了,我是你们的朋友全栈君。

Highways
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 14613   Accepted: 4211   Special Judge

Description

The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor system of public highways. The Flatopian government is aware of this problem and has already constructed a number of highways connecting some of the most important towns. However, there are still some towns that you can’t reach via a highway. It is necessary to build more highways so that it will be possible to drive between any pair of towns without leaving the highway system.

Flatopian towns are numbered from 1 to N and town i has a position given by the Cartesian coordinates (xi, yi). Each highway connects exaclty two towns. All highways (both the original ones and the ones that are to be built) follow straight lines, and thus their length is equal to Cartesian distance between towns. All highways can be used in both directions. Highways can freely cross each other, but a driver can only switch between highways at a town that is located at the end of both highways.

The Flatopian government wants to minimize the cost of building new highways. However, they want to guarantee that every town is highway-reachable from every other town. Since Flatopia is so flat, the cost of a highway is always proportional to its length. Thus, the least expensive highway system will be the one that minimizes the total highways length.

Input

The input consists of two parts. The first part describes all towns in the country, and the second part describes all of the highways that have already been built.

The first line of the input file contains a single integer N (1 <= N <= 750), representing the number of towns. The next N lines each contain two integers, xi and yi separated by a space. These values give the coordinates of i
th town (for i from 1 to N). Coordinates will have an absolute value no greater than 10000. Every town has a unique location.

The next line contains a single integer M (0 <= M <= 1000), representing the number of existing highways. The next M lines each contain a pair of integers separated by a space. These two integers give a pair of town numbers which are already connected by a highway. Each pair of towns is connected by at most one highway.

Output

Write to the output a single line for each new highway that should be built in order to connect all towns with minimal possible total length of new highways. Each highway should be presented by printing town numbers that this highway connects, separated by a space.

If no new highways need to be built (all towns are already connected), then the output file should be created but it should be empty.

Sample Input

9
1 5
0 0 
3 2
4 5
5 1
0 4
5 2
1 2
5 3
3
1 3
9 7
1 2

Sample Output

1 6
3 7
4 9
5 7
8 3

code:

prim算法

#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<sstream>
#include<algorithm>
#include<math.h>
#include<queue>
#include<stack>
#include<map>
#include<set>
using namespace std;
const int maxn=755;
const int INF=1000000;
double graph[maxn][maxn];
double lowcost[maxn];/*lowcost表示每个点的最小花费;*/
int closet[maxn];/*closet表示最小花费对应相连的点*/
int visited[maxn];/*visited区分两个集合*/
int n;/*n个点*/

struct dot{
    double x,y;
}a[maxn];

double f(dot p,dot q){
    return sqrt((p.x-q.x)*(p.x-q.x)+(p.y-q.y)*(p.y-q.y));
}

void createGraph(){
    memset(graph,0,sizeof(graph));
    memset(lowcost,0,sizeof(lowcost));
    memset(closet,0,sizeof(closet));
    memset(visited,0,sizeof(visited));
    for(int i=0;i<n;i++)
    for(int j=0;j<n;j++){
        if(i==j) graph[i][j]=INF;
        else graph[i][j]=graph[j][i]=f(a[i],a[j]);
    }
}

void prim(){
    visited[0]=1;/*选中第一个点*/
    for(int i=0;i<n;i++){
        lowcost[i]=graph[i][0];/*每个点与第一个点的权值*/
        closet[i]=0;/*与i点相连的是第一个点*/
    }
    for(int i=1;i<n;i++){  /*剩下n-1个点*/
        int k=0;
        double minn=lowcost[0];
        for(int j=0;j<n;j++){
            if(!visited[j] && lowcost[j]<minn){
                minn=lowcost[j];
                k=j;
            }
        }
        if(graph[k][closet[k]]!=0) printf("%d %d\n",k+1,closet[k]+1);
        visited[k]=1;
        for(int t=0;t<n;t++){  /*松弛操作*/
            if(!visited[t] && lowcost[t]>graph[t][k]){
                lowcost[t]=graph[t][k];
                closet[t]=k;
            }
        }
    }
}

int main()
{
 //   freopen("input.txt","r",stdin);
    int m;
    scanf("%d",&n);
    for(int i=0;i<n;i++){
        scanf("%lf%lf",&a[i].x,&a[i].y);
    }
    createGraph();
    scanf("%d",&m);
    int b,c;
    while(m--){
        scanf("%d%d",&b,&c);
        graph[b-1][c-1]=graph[c-1][b-1]=0;
    }
    prim();
}

Kruskal算法:注意要用G++提交

#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<sstream>
#include<algorithm>
#include<math.h>
#include<queue>
#include<stack>
#include<map>
#include<set>
using namespace std;
const int MAXN = 755; /*结点数目上限*/
int pa[MAXN];    /*pa[x]表示x的父节点*/
int rank[MAXN];    /*rank[x]是x的高度的一个上界*/
int flag;
struct node{
    int x,y;
    double w;
}edge[MAXN*MAXN];

struct dot{
    double x,y;
}a[MAXN];

bool cmp(node p,node q){
    return p.w<q.w;
}

double f(dot p,dot q){
    return sqrt((p.x-q.x)*(p.x-q.x)+(p.y-q.y)*(p.y-q.y));
}

/*创建一个单元集*/
void make_set(int x)
{
    pa[x] = x;
    rank[x] = 0;
}

/*带路径压缩的查找*/
int find_set(int x)
{
    if(x != pa[x])
        pa[x] = find_set(pa[x]);
    return pa[x];
}

/*按秩合并x,y所在的集合*/
void union_set(int xx, int yy,double w)
{
    int x = find_set(xx);
    int y = find_set(yy);
    if(x == y)return ;
    if(rank[x] > rank[y])/*让rank比较高的作为父结点*/
    {
        pa[y] = x;
    }
    else
    {
        pa[x] = y;
        if(rank[x] == rank[y])
            rank[y]++;
    }
    if(w!=0){
        printf("%d %d\n",xx,yy);
        flag=1;
    }
}

int main()
{
   // freopen("input.txt","r",stdin);
    int n,m;
    scanf("%d",&n);
    for(int i=0;i<MAXN;i++)
        make_set(i);
    for(int i=1;i<=n;i++){
        scanf("%lf%lf",&a[i].x,&a[i].y);
    }
    int k=0;
    for(int i=1;i<=n;i++){
        for(int j=i+1;j<=n;j++){
            edge[k].x=i;
            edge[k].y=j;
            edge[k].w=f(a[i],a[j]);
            k++;
        }
    }
    scanf("%d",&m);
    int b,c;
    while(m--){
        scanf("%d%d",&b,&c);
        union_set(b,c,0);
    }
    sort(edge,edge+k,cmp);
    flag=0;
    for(int i=0;i<k;i++){
        union_set(edge[i].x,edge[i].y,edge[i].w);
    }
    if(!flag) printf("\n");
}

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/129970.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • VB.NET数据库编程基础教程

    VB.NET数据库编程基础教程关键词:作者罗姗众所周知,VB.NET自身并不具备对数据库进行操作的功能,它对数据库的处理是通过.NETFrameWorkSDK中面向数据库编程的类库和微软的MDAC来实现的。其中,ADO.NET

    2022年7月1日
    23
  • php常用几种设计模式的应用场景

    php常用几种设计模式的应用场景

    2021年11月6日
    36
  • 无线ldap认证服务器,结合LDAP服务器进行portal认证配置案例

    无线ldap认证服务器,结合LDAP服务器进行portal认证配置案例查看LDAP服务器首先登录LDAP服务器,可以看到h3c.com下有一个组织单元”工程部”,其下有两个用户“gongcheng01”和“gongcheng02”。如下图:并且管理员administrator位于h3c.com下的Users下,如下图:按照此结构,接下来配置IMC。配置接入服务首先登录iMC页面,进入【用户-接入策略管理-接入策略配置】中创建接入策略“policy01”,如下图所示:…

    2022年5月14日
    52
  • 3s的基本概念_考研基础知识普及

    3s的基本概念_考研基础知识普及      一、什么是“3S”技术“3S”技术是英文遥感技术(RemoteSenescing  RS)、地理信息系统(GeographicalinformationSystem  GIS)、全球定位系统(GlobalPositioningSystem  GPS)这三种技术名词中最后一个单词字头的统称。二、为什么“3S”技术走到了一起人类有一个梦想,就是想只用一种方法,就把

    2022年8月30日
    3
  • 学PHP应注意的问题与知识点「建议收藏」

    学PHP应注意的问题与知识点

    2022年2月8日
    39
  • 借你一双慧眼,识别代码安全审计工具「建议收藏」

    借你一双慧眼,识别代码安全审计工具「建议收藏」代码安全审计产品、代码缺陷分析产品、代码安全分析等基于源代码静态分析技术的产品市场上越来越多,但是质量却层次不齐,误报率非常高,漏报率也不低,究其原因是为什么呢?因为一款静态分析类产品研发不是轻松的事,往往要经历几年时间,产品才会逐渐成熟,支持的开发语言和安全漏洞类型才能达到企业级应用水平,一般中小企业是很难投入如此长的时间进行研发的,而且静态分析类产品底…

    2022年10月9日
    2

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号