Highways「建议收藏」

Highways「建议收藏」HighwaysTimeLimit:1000MS MemoryLimit:10000KTotalSubmissions:14613 Accepted:4211 SpecialJudgeDescriptionTheislandnationofFlatopiaisperfectlyflat.

大家好,又见面了,我是你们的朋友全栈君。

Highways
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 14613   Accepted: 4211   Special Judge

Description

The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor system of public highways. The Flatopian government is aware of this problem and has already constructed a number of highways connecting some of the most important towns. However, there are still some towns that you can’t reach via a highway. It is necessary to build more highways so that it will be possible to drive between any pair of towns without leaving the highway system.

Flatopian towns are numbered from 1 to N and town i has a position given by the Cartesian coordinates (xi, yi). Each highway connects exaclty two towns. All highways (both the original ones and the ones that are to be built) follow straight lines, and thus their length is equal to Cartesian distance between towns. All highways can be used in both directions. Highways can freely cross each other, but a driver can only switch between highways at a town that is located at the end of both highways.

The Flatopian government wants to minimize the cost of building new highways. However, they want to guarantee that every town is highway-reachable from every other town. Since Flatopia is so flat, the cost of a highway is always proportional to its length. Thus, the least expensive highway system will be the one that minimizes the total highways length.

Input

The input consists of two parts. The first part describes all towns in the country, and the second part describes all of the highways that have already been built.

The first line of the input file contains a single integer N (1 <= N <= 750), representing the number of towns. The next N lines each contain two integers, xi and yi separated by a space. These values give the coordinates of i
th town (for i from 1 to N). Coordinates will have an absolute value no greater than 10000. Every town has a unique location.

The next line contains a single integer M (0 <= M <= 1000), representing the number of existing highways. The next M lines each contain a pair of integers separated by a space. These two integers give a pair of town numbers which are already connected by a highway. Each pair of towns is connected by at most one highway.

Output

Write to the output a single line for each new highway that should be built in order to connect all towns with minimal possible total length of new highways. Each highway should be presented by printing town numbers that this highway connects, separated by a space.

If no new highways need to be built (all towns are already connected), then the output file should be created but it should be empty.

Sample Input

9
1 5
0 0 
3 2
4 5
5 1
0 4
5 2
1 2
5 3
3
1 3
9 7
1 2

Sample Output

1 6
3 7
4 9
5 7
8 3

code:

prim算法

#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<sstream>
#include<algorithm>
#include<math.h>
#include<queue>
#include<stack>
#include<map>
#include<set>
using namespace std;
const int maxn=755;
const int INF=1000000;
double graph[maxn][maxn];
double lowcost[maxn];/*lowcost表示每个点的最小花费;*/
int closet[maxn];/*closet表示最小花费对应相连的点*/
int visited[maxn];/*visited区分两个集合*/
int n;/*n个点*/

struct dot{
    double x,y;
}a[maxn];

double f(dot p,dot q){
    return sqrt((p.x-q.x)*(p.x-q.x)+(p.y-q.y)*(p.y-q.y));
}

void createGraph(){
    memset(graph,0,sizeof(graph));
    memset(lowcost,0,sizeof(lowcost));
    memset(closet,0,sizeof(closet));
    memset(visited,0,sizeof(visited));
    for(int i=0;i<n;i++)
    for(int j=0;j<n;j++){
        if(i==j) graph[i][j]=INF;
        else graph[i][j]=graph[j][i]=f(a[i],a[j]);
    }
}

void prim(){
    visited[0]=1;/*选中第一个点*/
    for(int i=0;i<n;i++){
        lowcost[i]=graph[i][0];/*每个点与第一个点的权值*/
        closet[i]=0;/*与i点相连的是第一个点*/
    }
    for(int i=1;i<n;i++){  /*剩下n-1个点*/
        int k=0;
        double minn=lowcost[0];
        for(int j=0;j<n;j++){
            if(!visited[j] && lowcost[j]<minn){
                minn=lowcost[j];
                k=j;
            }
        }
        if(graph[k][closet[k]]!=0) printf("%d %d\n",k+1,closet[k]+1);
        visited[k]=1;
        for(int t=0;t<n;t++){  /*松弛操作*/
            if(!visited[t] && lowcost[t]>graph[t][k]){
                lowcost[t]=graph[t][k];
                closet[t]=k;
            }
        }
    }
}

int main()
{
 //   freopen("input.txt","r",stdin);
    int m;
    scanf("%d",&n);
    for(int i=0;i<n;i++){
        scanf("%lf%lf",&a[i].x,&a[i].y);
    }
    createGraph();
    scanf("%d",&m);
    int b,c;
    while(m--){
        scanf("%d%d",&b,&c);
        graph[b-1][c-1]=graph[c-1][b-1]=0;
    }
    prim();
}

Kruskal算法:注意要用G++提交

#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<sstream>
#include<algorithm>
#include<math.h>
#include<queue>
#include<stack>
#include<map>
#include<set>
using namespace std;
const int MAXN = 755; /*结点数目上限*/
int pa[MAXN];    /*pa[x]表示x的父节点*/
int rank[MAXN];    /*rank[x]是x的高度的一个上界*/
int flag;
struct node{
    int x,y;
    double w;
}edge[MAXN*MAXN];

struct dot{
    double x,y;
}a[MAXN];

bool cmp(node p,node q){
    return p.w<q.w;
}

double f(dot p,dot q){
    return sqrt((p.x-q.x)*(p.x-q.x)+(p.y-q.y)*(p.y-q.y));
}

/*创建一个单元集*/
void make_set(int x)
{
    pa[x] = x;
    rank[x] = 0;
}

/*带路径压缩的查找*/
int find_set(int x)
{
    if(x != pa[x])
        pa[x] = find_set(pa[x]);
    return pa[x];
}

/*按秩合并x,y所在的集合*/
void union_set(int xx, int yy,double w)
{
    int x = find_set(xx);
    int y = find_set(yy);
    if(x == y)return ;
    if(rank[x] > rank[y])/*让rank比较高的作为父结点*/
    {
        pa[y] = x;
    }
    else
    {
        pa[x] = y;
        if(rank[x] == rank[y])
            rank[y]++;
    }
    if(w!=0){
        printf("%d %d\n",xx,yy);
        flag=1;
    }
}

int main()
{
   // freopen("input.txt","r",stdin);
    int n,m;
    scanf("%d",&n);
    for(int i=0;i<MAXN;i++)
        make_set(i);
    for(int i=1;i<=n;i++){
        scanf("%lf%lf",&a[i].x,&a[i].y);
    }
    int k=0;
    for(int i=1;i<=n;i++){
        for(int j=i+1;j<=n;j++){
            edge[k].x=i;
            edge[k].y=j;
            edge[k].w=f(a[i],a[j]);
            k++;
        }
    }
    scanf("%d",&m);
    int b,c;
    while(m--){
        scanf("%d%d",&b,&c);
        union_set(b,c,0);
    }
    sort(edge,edge+k,cmp);
    flag=0;
    for(int i=0;i<k;i++){
        union_set(edge[i].x,edge[i].y,edge[i].w);
    }
    if(!flag) printf("\n");
}

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/129970.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 7k7k_leetcode 第一题

    7k7k_leetcode 第一题有 n 根长度互不相同的木棍,长度为从 1 到 n 的整数。请你将这些木棍排成一排,并满足从左侧 可以看到 恰好 k 根木棍。从左侧 可以看到 木棍的前提是这个木棍的 左侧 不存在比它 更长的 木棍。例如,如果木棍排列为 [1,3,2,5,4] ,那么从左侧可以看到的就是长度分别为 1、3 、5 的木棍。给你 n 和 k ,返回符合题目要求的排列 数目 。由于答案可能很大,请返回对 109 + 7 取余 的结果。示例 1:输入:n = 3, k = 2输出:3解释:[1,3,2], [2,3,

    2022年8月11日
    8
  • java基础-Java NIO使用及原理分析

    java基础-Java NIO使用及原理分析

    2022年2月24日
    73
  • MySQL修改root密码的4种方法

    MySQL修改root密码的4种方法方法1:用SETPASSWORD命令首先登录MySQL。格式:mysql>setpasswordfor用户名@localhost=password(‘新密码’);例子:mysql>setpasswordforroot@localhost=password(‘123’);方法2:用mysqladmin格式:mysqladmin-u用户名-p旧密

    2022年6月29日
    53
  • 网络工程师 PK 软件工程师

    网络工程师 PK 软件工程师

    2021年8月21日
    68
  • CDO盛行,CIO作何应对?

    CDO盛行,CIO作何应对?

    2022年3月4日
    42
  • 原地算法矩阵置0_矩阵归一化处理

    原地算法矩阵置0_矩阵归一化处理给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。进阶:一个直观的解决方案是使用 O(mn) 的额外空间,但这并不是一个好的解决方案。一个简单的改进方案是使用 O(m + n) 的额外空间,但这仍然不是最好的解决方案。你能想出一个仅使用常量空间的解决方案吗?示例 1:输入:matrix = [[1,1,1],[1,0,1],[1,1,1]]输出:[[1,0,1],[0,0,0],[1,0,1]]示例 2:输入:matrix

    2022年8月9日
    6

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号