卡尔曼滤波算法详细推导「建议收藏」

卡尔曼滤波算法详细推导「建议收藏」一、预备知识1、协方差矩阵是一个维列向量,是的期望,协方差矩阵为可以看出协方差矩阵都是对称矩阵且是半正定的协方差矩阵的迹是的均方误差2、用到的两个矩阵微分公式公式一:公式二:若是对称矩阵,则下式成立…

大家好,又见面了,我是你们的朋友全栈君。

一、预备知识

1、协方差矩阵

    X是一个n维列向量,u_ix_i的期望,协方差矩阵为

             P=E[(X-E[X])(X-E[X])^T] 

                =\begin{bmatrix} E[(x_1-u_1)(x_1-u_1)]& E[(x_1-u_1)(x_2-u_2)]& ...& E[(x_1-u_1)(x_n-u_n)]&\\ E[(x_2-u_2)(x_1-u_1)]& E[(x_2-u_2)(x_2-u_2)]& ...& E[(x_2-u_2)(x_n-u_n)]\\ ...& ...& ...& ...&\\ E[(x_n-u_n)(x_1-u_1)]& E[(x_n-u_n)(x_2-u_2)]& ...& E[(x_n-u_n)(x_n-u_n)]& \end{bmatrix}

      可以看出

   协方差矩阵都是对称矩阵且是半正定的  

   协方差矩阵的迹tr(P)X的均方误差

2、用到的两个矩阵微分公式

     公式一:

          \frac{\partial tr(AB)}{\partial A}=B^T

     公式二:若B是对称矩阵,则下式成立

          \frac{\partial tr(ABA^T)}{\partial A}=2AB         

tr表示矩阵的迹,具体推导过程参考相关矩阵分析教程  

二、系统模型与变量说明

1、系统离散型状态方程如下

     由k-1时刻到k时刻,系统状态预测方程

      X_k=AX_{k-1}+Bu_k+w_k

    系统状态观测方程

     Z_k=HX_k+v_k

2、变量说明如下

    A:状态转移矩阵

    u_k:系统输入向量

    B:输入增益矩阵

    w_k:均值为0,协方差矩阵为Q,且服从正态分布的过程噪声

    H:测量矩阵

    v_k:均值为0,协方差矩阵为R,且服从正态分布的测量噪声

    初始状态以及每一时刻的噪声{X_0, w_1,...,w_k,v_1,...v_k}都认为是互相独立的,实际上,很多真实世界的动态系统都并不确切的符合这个模型;但是由于卡尔曼滤波器被设计在有噪声的情况下工作,一个近似的符合已经可以使这个滤波器非常有用了。

三、卡尔曼滤波器

     卡尔曼估计实际由两个过程组成:预测与校正,在预测阶段,滤波器使用上一状态的估计,做出对当前状态的预测。在校正阶段,滤波器利用对当前状态的观测值修正在预测阶段获得的预测值,以获得一个更接进真实值的新估计值。

1、变量说明

    x_k:真实值

    \hat{x}_k:卡尔曼估计值

    P_k:卡尔曼估计误差协方差矩阵

    {\hat{x_k}}':预测值

    {P_k}':预测误差协方差矩阵

    K_k:卡尔曼增益

    \hat{z}_k:测量余量

2、卡尔曼滤波器计算过程

    预测:

    \hat{x}'_k=A\hat{x}_{k-1}+Bu_{k}

    {P}'_k=AP_{k-1}A^T+Q

    校正:

    \hat{z}_k=z_k-H\hat{x}'_k

    K_k={P}'_kH^T(H{P}'_kH^T+R)^{-1}

    \hat{x}_k=\hat{x}'_k+K_k\hat{z}_k

    更新协方差估计:

    P_k=(I-K_kH){P}'_k

    观察以上六个式子,我们使用过程中关键要明白{P}'_kK_k的算法原理,及P_k的更新算法

3、卡尔曼滤波算法详细推导

    从协方差矩阵开始说起,真实值与预测值之间的误差为

                 {e}'_k=x_k-\hat{x}'_k

    预测误差协方差矩阵为{P}'_k=E[{e}'_k{​{e}'_k}^T]=E[(x_k-\hat{x}'_k)(x_k-\hat{x}'_k)^T]

    真实值与估计值之间的误差为

           e_k=x_k-\hat{x}_k=x_k-(\hat{x}'_k+K_k(Hx_k+v_k-H\hat{x}'_k))

                =(I-K_kH)(x_k-\hat{x}'_k)-K_kv_k

    卡尔曼估计误差协方差矩阵为

             P_k=E[e_ke_k^T]

    将e_k代入得到

            P_k=E[[(I-K_kH)(x_k-\hat{x}'_k)-K_kv_k][(I-K_kH)(x_k-\hat{x}'_k)-K_kv_k]^T]

                  =(I-K_kH)E[(x_k-\hat{x}'_k)(x_k-\hat{x}'_k)^T](I-K_kH)^T+K_kE[v_k{v}^T_k]K^T                  

   其中  E[v_kv_k^T]=R,并将预测误差协方差矩阵代入,得到

                P_k=(I-K_kH){P}'_k(I-K_kH)^T+K_kRK_k^T

    卡尔曼滤波本质是最小均方差估计,而均方差是P_k的迹,将上式展开并求迹

                 tr(P_k)=tr({P}'_k)-2tr(K_kH{P}'_k)+tr(K_k(H{P}'_kH^T+R)K_k^T)

    最优估计K_k使tr(P_k)最小,所以上式两边对K_k求导

              \frac{\partial tr(P_k)}{\partial K_k} = -\frac{\partial tr(2K_kH{P}'_k)}{\partial K_k}+\frac{\partial tr(K_k(H{P}'_kH^T+R)K_k^T)}{\partial K_k}

套用第一节中提到的那两个矩阵微分公式,得到

             \frac{\partial tr(P_k)}{\partial K_k}=-2(H{P}'_k)^T+2K_k(H{P}'_kH^T+R)

令上式等于0,得到

                   K_k=P_k'H^T(HP_k'H^T+R)^{-1}

到此,我们就知道了卡尔曼增益是怎么算出来的了,但是又有问题,P'_k是怎么算的呢?

     P'_k=E[(x_k-\hat{x}'_k)(x_k-\hat{x}'_k)^T]

          =E[(Ax_{k-1}+Bu_k+w_k-A\hat{x}_{k-1}-Bu_k)(Ax_{k-1}+Bu_k+w_k-A\hat{x}_{k-1}-Bu_k)^T]

          =E[(A(x_{k-1}-\hat{x}_{k-1})+w_k)(A(x_{k-1}-\hat{x}_{k-1})+w_k)^T]

          =E[(Ae_{k-1})(Ae_{k-1})^T]+E[w_kw_k^T]

          =AP_{k-1}A^T+Q

    (注意其中展开过程用到了E[w_k]=0)

所以预测误差协方差矩阵P'_k可以由上一次算出的估计误差协方差矩阵P_{k-1}及状态转移矩阵A和过程激励噪声的协方差矩阵Q算得

4、总结

总结卡尔曼滤波的更新过程为

1步,首先P_0x_0已知,然后由P_0算出P'_1,再由P'_1算出K_1,有了这些参数后,结合观测值就能估计出x_1,再利用K_1更新P_1

2步,然后下次更新过程为由P_1算出P'_2,再由P'_2算出K_2,有了这些参数后,结合观测值就能估计出x_2,再利用K_2更新P_2

……

n步,由P_{n-1}算出P'_n,再由P'_n算出K_n,有了这些参数后,结合观测值就能估计出x_n,再利用K_n更新P_n

这就是卡尔曼滤波器递推过程。

至于P_k的算法,

   P_k=P'_k-K_kHP'_k-P'_kH^TK_k^T+K_k(HP'_kH^T+R)K_k^T

K_k代入上式右边最后一项中 ,K_k^T保持原样

   P_k=P'_k-K_kHP'_k-P'_kH^TK_k^T+P'_kH^T(HP'_kH^T+R)^{-1}(HP'_kH^T+R)K_k^T

        =P'_k-K_kHP'_k

       =(I-K_kH)P'_k

(转载请声明出处 谢谢合作)

reference:

1、https://zh.wikipedia.org/wiki/%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2

2、《矩阵分析与应用》 张贤达 著

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/130649.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 通过Zimbra收取POP3邮件,总是提示错误:Connection reset

    通过Zimbra收取POP3邮件,总是提示错误:Connection reset

    2021年5月11日
    114
  • 如何破解运动世界校园模拟器检测

    本文已过时最新版不可用最早用安卓上的PacketCapture抓到http包只要删除对应模拟器文件就可以后来变成了https又对emulatorUrls进行了加密再追加了几个文件就难倒了一批菜鸡软件使用360加固直接逆向难度不小选择曲线救国第一次用Flidder的autoresponder直接把emulatorUrls的值清零返回.

    2022年4月7日
    143
  • 判断入射满射c语言编码,例4,判断下列函数是否是满射、单射、双射。.PDF

    判断入射满射c语言编码,例4,判断下列函数是否是满射、单射、双射。.PDF例4,判断下列函数是否是满射、单射、双射。4,判断下列函数是否是满射、单射、双射。(1)f:N→Z,F(n)=小于n的完全平方数的个数f(n)={<0、0>,<1,1>,<2,2>,<3,2>,<4,2>,<5、2>}:f(48)=7f(49)=7f(50)=8,不是单射,48,49的像均是7,不…

    2022年6月1日
    57
  • Django外键(ForeignKey)操作以及related_name的作用

    Django外键(ForeignKey)操作以及related_name的作用之前已经写过一篇关于Django外键的文章,但是当时并没有介绍如何根据外键对数据的操作,也就是如何通过主表查询子表或者通过子表查询主表的信息  首先我定义了两个模型,一个是老师模型,一个是学生模型,一个老师对应多个学生,这个算是一个一对多的类型(如下图所示)      那么如果我们要想查询一个老师对应的学生有哪些,该如何操作呢?   首先我们先查询到老师的信息,在这里我们使用pyt

    2022年6月23日
    25
  • vue如何引用js文件_html转化为vue组件

    vue如何引用js文件_html转化为vue组件VUE项目中引入JS文件的几种方法在开发Vue项目的时候,有时需要使用一些非ES6格式的没有export的js库,可以有如下方法实现:1.在index.html页面使用script标签引入当然也可以使用cdn的地址。这样引入后的内容是全局的,可以在所有地方使用。Map2.在main.js中使用window.moduleName使用也可以放入Vue.prototype中,这样组件内都可以使用。va…

    2022年10月8日
    0
  • MySQL 中NULL和空值的区别?

    做一个积极的人编码、改bug、提升自己我有一个乐园,面向编程,春暖花开!01 小木的故事作为后台开发,在日常工作中如果要接触Mysql数据库,那么不可避免会遇到Mysql中的NULL和空值。那你知道它们有什么区别吗?学不动了,也不想知道它们有什么区别。大兄弟,不行啊,要面试!前些天我的好朋友小木去应聘工作,他面试完回来和我聊天回味了一道他的面试题。面试官:你有用过MyS…

    2022年2月28日
    41

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号