滤波算法(四)—— 卡尔曼滤波算法

滤波算法(四)—— 卡尔曼滤波算法一、算法介绍卡尔曼滤波是一个神奇的滤波算法,应用非常广泛,它是一种结合先验经验、测量更新的状态估计算法。1、状态估计首先,对于一个我们关心的物理量,我们假设它符合下面的规律其中,为该物理量本周期的实际值,为该物理量上一个周期的实际值,当然这个物理量可能不符合这个规律,我们只是做了一个假设。不同的物理量符合的规律不同,是我们的经验,我们根据这个规律…

大家好,又见面了,我是你们的朋友全栈君。

一、算法介绍

        卡尔曼滤波是一个神奇的滤波算法,应用非常广泛,它是一种结合先验经验、测量更新的状态估计算法。

1、状态估计

        首先,对于一个我们关心的物理量,我们假设它符合下面的规律

x_{k}=ax_{k-1}

其中,x_{k}为该物理量本周期的实际值,x_{k-1}为该物理量上一个周期的实际值,当然这个物理量可能不符合这个规律,我们只是做了一个假设。不同的物理量符合的规律不同,是我们的经验,我们根据这个规律可以预测我们关心的物理量。比如,我们关心的物理量是车速,如果车辆接近匀速运动时,则a的取值为1,也就是这个周期与上个周期的速度相同。

        下面我们再来看一下这个物理量的测量公式

z_{k}=x_{k}+v_{k}

其中,z_{k}是这个物理量的测量值,v_{k}是测量噪声。我们对一个物理进行预测,测量是一个必不可少的手段,虽然测量的不一定准,但是在很大程度上体现了物理量的实际值。这个公式体现的就是实际值与测量值的关系。还是以车速为例,z_{k}是通过车速传感器得到的测量值。

        实际中,物理量一般不会像我们上面的公式那样简单,一般我们用下面的公式来表示

x_{k}=ax_{k-1}+bu_{k}

其中,bu_{k} 代表了处理噪声,这个噪声是处理模型与实际情况的差异,比如车速,他会受到人为加速、减速、路面不平等外界因素的影响。

        卡尔曼滤波的基本思想是综合利用上一次的状态和测量值来对物理量的状态进行预测估计。我们用\hat{x_{k}}来表示x_{k}的估计值,则有下面的公式

\hat{x}_{k}=\hat{x}_{k-1}+g_{k}\left ( z_{k}-\hat{x}_{k-1} \right )

在这个公式中,综合利用了上一个周期的估计值和这个周期的测量值来对x_{k}进行估计。其中,g_{k}叫做卡尔曼增益,这个公式与一阶滤波很相似,只不过卡尔曼增益是会变的,每个周期都会更新,一阶滤波的系数则是固定值。考虑极端的情况来分析增益的作用,当g_{k}=0时,增益为0,这时\hat{x}_{k}=\hat{x}_{k-1},这表示我们这个周期的估计值与上个周期是相同的,不信任当前的测量值;当g_{k}=1时,增益为1,这时\hat{x}_{k}=z_{k},这表示我们这个周期的估计值与测量值是相同的,不信任上个周期的估计值,在实际应用时,g_{k}介于0~1之间,它代表了对测量值的信任程度。

2、卡尔曼增益

        上面我们通过卡尔曼增益来估计物理量的值,那卡尔曼增益又是如何取值的呢?我们通过下面两个公式来计算并在每个周期进行迭代更新。

g_{k}=p_{k-1}/\left ( p_{k-1}+r \right )

p_{k}=\left ( 1-g_{k} \right )p_{k-1}

在上述公式中,r是测量噪声v_{k}的平均值,测量噪声是符合高斯分布的,一般可以从传感器厂商那里获得测量噪声的均值,如果无法获得可以根据采集到的数据给出一个经验值。r的大小对最终滤波效果的影响是比较大的。p_{k} 为本周期的预测误差。我们采用分析卡尔曼增益的方法来分析预测误差的作用,即采用假设极端情况的方法。假设前一次的预测误差p_{k-1}=0,根据第一个公式则g_{k}=0,根据上面的分析,这种情况估计值为上个周期的估计值;如果前一次的预测误差p_{k-1}=1,则增益变为1/\left ( 1+r \right ),一般r取值很小,所以g_{k}\approx 1,这种情况以新测量的值作为估计值。

        对于第二个公式,当卡尔曼增益为0时,p_{k}=p_{k-1},即采用上一个周期的预测误差;当增益为1时,p_{k}=0

3、完整卡尔曼滤波算法

        有了上面的推导,我们在下面列出来完成卡尔曼滤波的公式,卡尔曼滤波分为预测过程和更新过程两个过程,在公式中,我们又引入了缩放系数h,和协方差q

预测过程:

\hat{x}_{k}=a\hat{x}_{k-1}+bu_{k}

p_{k}=ap_{k-1}a+q

更新过程:

g_{k}=p_{k}h/\left ( hp_{k}h+r \right )

\hat{x}_{k}=\hat{x}_{k}+g_{k}\left ( z_{k}-h\hat{x}_{k} \right )

p_{k}=\left ( 1-g_{k}h \right )p_{k}

        上面的公式适合一维变量的卡尔曼滤波,将变量扩展到多维,用向量和矩阵替换上面的变量,就可以实现多维变量的卡尔曼滤波,下面的公式适用于多维变量。

预测过程:

\hat{x}_{k}=A\hat{x}_{k-1}+Bu_{k}

P_{k}=AP_{k-1}A^{T}+Q

更新过程:

G_{k}=P_{k}H^{T}\left ( HP_{k}H^{T}+R \right )^{-1}

\hat{x}_{k}=\hat{x}_{k}+G_{k}\left ( z_{k}-H\hat{x}_{k} \right )

P_{k}=\left ( 1-G_{k}H \right )P_{k}

二、实现代码

        下面我们通过c++代码来实现卡尔曼滤波算法,所实现的算法为一维滤波算法。首先定义卡尔曼滤波的参数

typedef struct{
    float filterValue;//滤波后的值
    float kalmanGain;//Kalamn增益
    float A;//状态矩阵
    float H;//观测矩阵
    float Q;//状态矩阵的方差
    float R;//观测矩阵的方差
    float P;//预测误差
    float B;
    float u;
}KalmanInfo;

下面是卡尔曼滤波器的初始化函数,在这个函数中,info为卡尔曼滤波参数的指针。初始化的参数是针对一个车速滤波过程的设置。

void Kalm::initKalmanFilter(KalmanInfo *info)
{
    info->A = 1;
    info->H = 1;
    info->P = 0.1;
    info->Q = 0.05;
    info->R = 0.1;
    info->B = 0.1;
    info->u = 0;
    info->filterValue = 0;
}

卡尔曼滤波过程函数,函数的输入info为卡尔曼滤波参数的指针,new_value为新的测量值,函数返回滤波后的估计值。

float Kalm::kalmanFilterFun(KalmanInfo *info, float new_value)
{
    float predictValue = info->A*info->filterValue+info->B*info->u;//计算预测值
    info->P = info->A*info->A*info->P + info->Q;//求协方差
    info->kalmanGain = info->P * info->H /(info->P * info->H * info->H + info->R);//计算卡尔曼增益
    info->filterValue = predictValue + (new_value - predictValue)*info->kalmanGain;//计算输出的值
    info->P = (1 - info->kalmanGain* info->H)*info->P;//更新协方差
    return info->filterValue;
}

三、示例

        下面我们通过是一个车速滤波的示例来体验卡尔曼滤波的效果。通过上面的介绍,R对滤波效果的影响比较大,在这个示例中,我们分别将R取为0.1和0.5,来看一下车速的滤波效果。首先R取为0.1时,滤波效果如下图所示。其中,蓝色线为滤波前的车速,红色线为滤波后的车速。从图中可以看到滤波后的信号与滤波前的信号跟随很好,滞后很小。基本波动被滤掉了,但也带入了一些波动。

滤波算法(四)—— 卡尔曼滤波算法

下图为R取为0.5时的滤波效果,很明显,这张图信号的跟随效果比上图要差,滞后也多,但是滤波后曲线更平滑。

滤波算法(四)—— 卡尔曼滤波算法

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/130770.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Linux被kdevtmpfsi 挖矿病毒入侵[通俗易懂]

    Linux被kdevtmpfsi 挖矿病毒入侵[通俗易懂]Linux被kdevtmpfsi挖矿病毒入侵一.错误信息二.解决问题1.首先停掉kdevtmpfsi的程序2.删除Linux下的异常定时任务3.结束kdevtmpfsi进程及端口占用4.删除掉kdevtmpfsi的相关文件一.错误信息先上阿里云上的报警信息。有个最大的问题是:top命令查看自己服务器CPU运行情况,会发现kdevtmpfsi的进程,CPU使用率为100%,第一次删除干净了k…

    2022年5月30日
    33
  • Python 学习笔记 变量 xxx XXX「建议收藏」

    Python 学习笔记 变量 xxx XXX「建议收藏」Python学习笔记变量xxxXXXname=”adalovelace”print(name.title())print(name.upper())print(name.lower())first_name=”ada”last_name=”lovelace”full_name=first_name+””+last_nameprint(full_name)print(“Hello,”+…

    2022年8月22日
    5
  • win10安装vmware虚拟机蓝屏_安装完mac虚拟机出现蓝屏

    win10安装vmware虚拟机蓝屏_安装完mac虚拟机出现蓝屏我们在创建虚拟机的时候,选择的是去创建一个默认的虚拟机,然后创建完成直接将系统装在了这个虚拟机中而这,就是这个问题的所在,对于网上下载的sp3_iso系统来讲,是需要一个ida的硬盘,就是要将虚拟机的硬盘模式重新设置一下对当前虚拟机进行设置,将原来的硬盘删除掉,重新添加HardDisk(也就是硬盘的意思)我们选择这个HardDisk选项,点击下一步然后我们出现了这样一…

    2022年8月16日
    5
  • 设置PyCharm运行程序时在Run窗口运行,不在Python Console窗口中运行

    设置PyCharm运行程序时在Run窗口运行,不在Python Console窗口中运行最近,我在

    2022年8月28日
    2
  • jenkins详解

    jenkins详解Jenkins是一个功能强大的应用程序,允许持续集成和持续交付项目,无论用的是什么平台。这是一个免费的源代码,可以处理任何类型的构建或持续集成。集成Jenkins可以用于一些测试和部署技术。Jenkins是一种软件允许持续集成。

    2022年6月2日
    68
  • 【深度学习】回归问题损失函数——均方误差(MSE)

    【深度学习】回归问题损失函数——均方误差(MSE)本文主要介绍回归问题的损失函数——均方误差,以及TensorFlow的实现。

    2022年9月27日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号